Fast computation of von Neumann entropy for large-scale graphs via quadratic approximations

The von Neumann graph entropy (VNGE) can be used as a measure of graph complexity, which can be the measure of information divergence and distance between graphs. However, computing VNGE is extensively demanding for a large-scale graph. We propose novel quadratic approximations for fast computing VNGE. Various inequalities for error between the quadratic approximations and the exact VNGE are found. Our methods reduce the cubic complexity of VNGE to linear complexity. Computational simulations on random graph models and various real network datasets demonstrate superior performance.

[1]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[2]  Wojciech Szpankowski,et al.  Randomized Linear Algebra Approaches to Estimate the Von Neumann Entropy of Density Matrices , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[3]  Tore Opsahl Triadic closure in two-mode networks: Redefining the global and local clustering coefficients , 2013, Soc. Networks.

[4]  Sijia Liu,et al.  Fast Incremental von Neumann Graph Entropy Computation: Theory, Algorithm, and Applications , 2018, ICML.

[5]  G. Jaeger,et al.  Quantum Information: An Overview , 2006 .

[6]  Distance between spectra of graphs , 2015 .

[7]  Ryan A. Rossi,et al.  The Network Data Repository with Interactive Graph Analytics and Visualization , 2015, AAAI.

[8]  Wojciech Szpankowski,et al.  Randomized Linear Algebra Approaches to Estimate the von Neumann Entropy of Density Matrices , 2020, IEEE Transactions on Information Theory.

[9]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[10]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[11]  Peter A. Flach,et al.  Proceedings of the 28th International Conference on Machine Learning , 2011 .

[12]  Tore Opsahl,et al.  Clustering in weighted networks , 2009, Soc. Networks.

[13]  Dominik Endres,et al.  A new metric for probability distributions , 2003, IEEE Transactions on Information Theory.

[14]  Gene H. Golub,et al.  Matrix computations , 1983 .

[15]  Edwin R. Hancock,et al.  Network analysis using entropy component analysis , 2018, J. Complex Networks.

[16]  Sijia Liu,et al.  FIRST-ORDER BIFURCATION DETECTION FOR DYNAMIC COMPLEX NETWORKS , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[17]  Vito Latora,et al.  Structural reducibility of multilayer networks , 2015, Nature Communications.

[18]  Andrea Torsello,et al.  On the von Neumann entropy of graphs , 2018, J. Complex Networks.

[19]  Edwin R. Hancock,et al.  Jensen-Shannon graph kernel using information functionals , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[20]  Peter Harremoës,et al.  Properties of Classical and Quantum Jensen-Shannon Divergence , 2009 .

[21]  Noureddine Melikechi,et al.  A Family of Chisini Mean Based Jensen-Shannon Divergence Kernels , 2015, 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA).

[22]  P. Harremoes,et al.  Properties of Classical and Quantum Jensen-Shannon Divergence , 2008, 0806.4472.

[23]  Distance between the normalized Laplacian spectra of two graphs , 2017 .

[24]  Edwin R. Hancock,et al.  Graph clustering using graph entropy complexity traces , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[25]  Canh Hao Nguyen,et al.  A new dissimilarity measure for comparing labeled graphs , 2013 .

[26]  Béla Bollobás,et al.  Random Graphs , 1985 .

[27]  Yuanming Shi,et al.  Comparing large-scale graphs based on quantum probability theory , 2018, Appl. Math. Comput..

[28]  Georgios B. Giannakis,et al.  Data-Adaptive Active Sampling for Efficient Graph-Cognizant Classification , 2017, IEEE Transactions on Signal Processing.

[29]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[30]  Amir Asif,et al.  Distributed-Graph-Based Statistical Approach for Intrusion Detection in Cyber-Physical Systems , 2018, IEEE Transactions on Signal and Information Processing over Networks.

[31]  Ginestra Bianconi,et al.  Entropy measures for networks: toward an information theory of complex topologies. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  G. Bianconi,et al.  Shannon and von Neumann entropy of random networks with heterogeneous expected degree. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  S. V. N. Vishwanathan,et al.  A Structural Smoothing Framework For Robust Graph Comparison , 2015, NIPS.