Regularized determinants of Laplace-type operators, analytic surgery, and relative determinants

We study the asymptotic behaviour of regularized determinants of certain Laplace type operators with respect to singular deformations of the underlying manifold which are obtained by stretching a tubular neighborhood of an embedded separating hypersurface to a cylinder of infinite length. Using the asymptotic expansions, we derive adiabatic splitting formulas for regularized determinants of Laplace type operators.

[1]  Zero sets of solutions to semilinear elliptic systems of first order , 1998, math/9805065.

[2]  J. Bismut,et al.  Fibrés déterminants, métriques de Quillen et dégénérescence des courbes , 1990 .

[3]  P. Gilkey The spectral geometry of a Riemannian manifold , 1975 .

[4]  Jinsung Park,et al.  Decomposition of the {$\zeta$}-determinant for the Laplacian on manifolds with cylindrical end , 2004 .

[5]  Andrew Hassell,et al.  Analytic surgery and the accumulation of eigenvalues , 1995 .

[6]  Andrew Hassell Analytic surgery and analytic torsion , 1994 .

[7]  R. Melrose,et al.  Analytic surgery and the eta invariant , 1995 .

[8]  T. Kappeler,et al.  Meyer-Vietoris type formula for determinants of elliptic differential operators , 1992 .

[9]  L. Guillopé Théorie spectrale de quelques variétés à bouts , 1989 .

[10]  P. Stevenhagen,et al.  ELLIPTIC FUNCTIONS , 2022 .

[11]  W. Müller Eta invariants and manifolds with boundary , 1993 .

[12]  Jinsung Park,et al.  Scattering Theory and Adiabatic Decomposition of the $\z$-determinant of the Dirac Laplacian , 2002 .

[13]  W. Müller Relative Zeta Functions, Relative Determinants and Scattering Theory , 1998 .

[14]  W. Müller Manifolds with cusps of rank one , 1987 .

[15]  Jinsung Park,et al.  ADIABATIC DECOMPOSITION OF THE -DETERMINANT OF THE DIRAC LAPLACIAN. I. THE CASE OF AN INVERTIBLE TANGENTIAL OPERATOR , 2002 .

[16]  Determinants of Laplacians in Exterior Domains , 2000, math/0002023.