State Transition Graphs for Semantic Analysis of Movement Behaviours

A behaviour can be defined as a sequence of states or activities occurring one after another. A behaviour consisting of a finite number of reoccurring states/activities may be represented by a directed weighted graph with nodes and edges corresponding, respectively, to the possible states and transitions between them, while the weights represent the probabilities or frequencies of the state and transition occurrences. The same applies to multiple behaviours sharing the same set of possible states. In analysis of movement data, state transition graphs can be used to represent semantic abstractions of mobility behaviours, where states correspond to semantic categories of visited places (such as ‘home’, ‘work’, ‘shop’), activities of moving objects (‘driving’, ‘walking’, ‘exercising’, etc.) or characteristics of the movement (‘straight movement’, ‘sharp turn’, ‘acceleration’, ‘stop’, etc.). Such a representation supports the exploration and analysis of the semantic aspect (i.e. the meaning or purposes) of movement. For comprehensive analysis of movement data, state transition graphs need to be combined with representations reflecting the spatial and temporal aspects of the movement. This requires appropriate coordination between different visual displays (graphs, maps and temporal views) and appropriate reaction to analytical operations applied to any of the representations of the same data. We define in an abstract way the reactions of a graph display to analytical operations of querying, partitioning and direct selection. We also propose visual and interactive display features supporting comparisons between data subsets and between results of different operations. We demonstrate the use of the display features by examples of real-world and synthetic data sets.

[1]  Mira Dontcheva,et al.  MatrixWave: Visual Comparison of Event Sequence Data , 2015, CHI.

[2]  Hans-Peter Kriegel,et al.  OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.

[3]  昌子 伊東,et al.  Conference on Human Factors in Computing Systems: CHI'96のワークショップ参加報告 , 1996 .

[4]  Jarke J. van Wijk,et al.  Visual Analysis of Multivariate State Transition Graphs , 2006, IEEE Transactions on Visualization and Computer Graphics.

[5]  B. Marx The Visual Display of Quantitative Information , 1985 .

[6]  Chao Xu,et al.  Identifying travel mode from GPS trajectories through fuzzy pattern recognition , 2010, 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery.

[7]  Ben Shneiderman,et al.  LifeLines: visualizing personal histories , 1996, CHI.

[8]  Charu C. Aggarwal,et al.  Data Clustering , 2013 .

[9]  Chandler Stolp,et al.  The Visual Display of Quantitative Information , 1983 .

[10]  Robert Spence,et al.  The Attribute Explorer: information synthesis via exploration , 1998, Interact. Comput..

[11]  Robert S. Laramee,et al.  Smooth Graphs for Visual Exploration of Higher-Order State Transitions , 2009, IEEE Transactions on Visualization and Computer Graphics.

[12]  Paul Vickers,et al.  A survey of two-dimensional graph layout techniques for information visualisation , 2013, Inf. Vis..

[13]  Gennady L. Andrienko,et al.  Analysis of mobility behaviors in geographic and semantic spaces , 2014, 2014 IEEE Conference on Visual Analytics Science and Technology (VAST).

[14]  Charu C. Aggarwal,et al.  Data Clustering : Algorithms and Applications , 2012 .

[15]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[16]  Christophe Hurter,et al.  Scalable Analysis of Movement Data for Extracting and Exploring Significant Places , 2013, IEEE Transactions on Visualization and Computer Graphics.

[17]  P. Riehmann,et al.  Interactive Sankey diagrams , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[18]  Gennady L. Andrienko,et al.  Visual analytics methods for categoric spatio-temporal data , 2012, 2012 IEEE Conference on Visual Analytics Science and Technology (VAST).

[19]  Heidrun Schumann,et al.  Visualization of Time-Oriented Data , 2011, Human-Computer Interaction Series.

[20]  Georg Fuchs,et al.  Towards Privacy-Preserving Semantic Mobility Analysis , 2013, EuroVA@EuroVis.

[21]  Heidrun Schumann,et al.  A Survey of Multi-faceted Graph Visualization , 2015, EuroVis.

[22]  Ben Shneiderman,et al.  LifeFlow: visualizing an overview of event sequences , 2011, CHI.

[23]  Andreas Kerren,et al.  MobilityGraphs: Visual Analysis of Mass Mobility Dynamics via Spatio-Temporal Graphs and Clustering , 2016, IEEE Transactions on Visualization and Computer Graphics.

[24]  Matthew O. Ward,et al.  High Dimensional Brushing for Interactive Exploration of Multivariate Data , 1995, Proceedings Visualization '95.

[25]  Dennis J. Bouvier,et al.  Evacuation Traces Mini Challenge award: Innovative trace visualization staining for information discovery , 2008, 2008 IEEE Symposium on Visual Analytics Science and Technology.

[26]  Thomas Liebig,et al.  Visual Analytics for Understanding Spatial Situations from Episodic Movement Data , 2012, KI - Künstliche Intelligenz.

[27]  Michael Burch,et al.  The State of the Art in Visualizing Dynamic Graphs , 2014, EuroVis.

[28]  Kwan-Liu Ma,et al.  Temporal Multivariate Networks , 2013, Multivariate Network Visualization.

[29]  J.C. Roberts,et al.  State of the Art: Coordinated & Multiple Views in Exploratory Visualization , 2007, Fifth International Conference on Coordinated and Multiple Views in Exploratory Visualization (CMV 2007).

[30]  Camilla Forsell,et al.  2D and 3D Representations for Feature Recognition in Time Geographical Diary Data , 2010, Inf. Vis..

[31]  Piotr Jankowski,et al.  Scalable and privacy-respectful interactive discovery of place semantics from human mobility traces , 2016, Inf. Vis..

[32]  Richard A. Becker,et al.  Brushing scatterplots , 1987 .

[33]  Jarke J. van Wijk,et al.  Interactive Visualization of State Transition Systems , 2002, IEEE Trans. Vis. Comput. Graph..

[34]  J. V. van Wijk,et al.  Visualization of state transition graphs , 2001, IEEE Symposium on Information Visualization, 2001. INFOVIS 2001..

[35]  Pip Forer,et al.  Activities, ringmaps and geovisualization of large human movement fields , 2008, Inf. Vis..

[36]  Matthew D. Cooper,et al.  ActiviTree: Interactive Visual Exploration of Sequences in Event-Based Data Using Graph Similarity , 2009, IEEE Transactions on Visualization and Computer Graphics.

[37]  Ben Shneiderman,et al.  Temporal Event Sequence Simplification , 2013, IEEE Transactions on Visualization and Computer Graphics.

[38]  Ben Shneiderman,et al.  Dynamic queries for visual information seeking , 1994, IEEE Software.

[39]  Louise Barrett,et al.  Space Transformation for Understanding Group Movement , 2013, IEEE Transactions on Visualization and Computer Graphics.

[40]  Jonathan C. Roberts,et al.  Visual comparison for information visualization , 2011, Inf. Vis..