Epanechnikov kernel for PDF estimation applied to equalization and blind source separation

Abstract Information Theoretic Learning (ITL) methods have been applied in a variety of applications as dynamic modeling, equalization and blind source separation. Usually, such methods involve the estimation of the probability density function (pdf) of the signals, what can be achieved through the use of kernel density estimators (KDE). In literature, the Gaussian kernel is the most largely used function in the estimator. However, using a second-order approximation, it is possible to show that the Epanechnikov kernel leads to an improved pdf estimation when compared to that using the Gaussian kernel. Hence, in this work, we explore the use of the Epanechnikov kernel in KDE applied to equalization and blind source separation problems. Following an ITL perspective, we develop methods based on the Epanechnikov kernel for both problems, showing how the proposed approach may improve performance when compared to methods in the literature which use the Gaussian kernel.

[1]  V. A. Epanechnikov Non-Parametric Estimation of a Multivariate Probability Density , 1969 .

[2]  Deniz Erdogmus,et al.  Stochastic blind equalization based on PDF fitting using Parzen estimator , 2005, IEEE Transactions on Signal Processing.

[3]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[4]  Naotaka Fujii,et al.  A new method for quantifying the performance of EEG blind source separation algorithms by referencing a simultaneously recorded ECoG signal , 2017, Neural Networks.

[5]  Denis G. Fantinato,et al.  An Introduction to Information Theoretic Learning, Part II: Applications , 2016 .

[6]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[7]  D. Godard,et al.  Self-Recovering Equalization and Carrier Tracking in Two-Dimensional Data Communication Systems , 1980, IEEE Trans. Commun..

[8]  Yannick Deville,et al.  An Overview of Blind Source Separation Methods for Linear-Quadratic and Post-nonlinear Mixtures , 2015, LVA/ICA.

[9]  C. Jutten,et al.  A Bayesian Nonlinear Source Separation Method for Smart Ion-Selective Electrode Arrays , 2009, IEEE Sensors Journal.

[10]  J. Treichler,et al.  A new approach to multipath correction of constant modulus signals , 1983 .

[11]  Robert P. W. Duin,et al.  Blind separation of rotating machine sources: bilinear forms and convolutive mixtures , 2002, Neurocomputing.

[12]  Ehud Weinstein,et al.  New criteria for blind deconvolution of nonminimum phase systems (channels) , 1990, IEEE Trans. Inf. Theory.

[13]  Ricardo Suyama,et al.  Unsupervised Signal Processing: Channel Equalization and Source Separation , 2010 .

[14]  Pierre Comon,et al.  Handbook of Blind Source Separation: Independent Component Analysis and Applications , 2010 .

[15]  Levy Boccato,et al.  Multivariate PDF matching via kernel density estimation , 2014, 2014 IEEE Symposium on Computational Intelligence for Multimedia, Signal and Vision Processing (CIMSIVP).

[16]  José Carlos Príncipe,et al.  Adaptive blind equalization through quadratic pdf matching , 2002, 2002 11th European Signal Processing Conference.

[17]  Deniz Erdogmus,et al.  Entropy minimization for supervised digital communications channel equalization , 2002, IEEE Trans. Signal Process..

[18]  Christian Jutten,et al.  Source separation in post-nonlinear mixtures , 1999, IEEE Trans. Signal Process..

[19]  João Marcos Travassos Romano,et al.  An Analysis of Unsupervised Signal Processing Methods in the Context of Correlated Sources , 2009, ICA.

[20]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[21]  Laurent Albera,et al.  Second-order blind separation of first- and second-order cyclostationary sources-application to AM, FSK, CPFSK, and deterministic sources , 2004, IEEE Transactions on Signal Processing.

[22]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[23]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[24]  Jean-Francois Cardoso,et al.  Source separation using higher order moments , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[25]  Romis de Faissol Attux,et al.  Analysis of a Novel Density Matching Criterion Within the ITL Framework for Blind Channel Equalization , 2018, Circuits Syst. Signal Process..

[26]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[27]  Christian Jutten,et al.  Using Taylor Series Expansions and Second-Order Statistics for Blind Source Separation in Post-Nonlinear Mixtures , 2018, LVA/ICA.

[28]  Jean-François Cardoso,et al.  Equivariant adaptive source separation , 1996, IEEE Trans. Signal Process..

[29]  Jose C. Principe,et al.  Information Theoretic Learning - Renyi's Entropy and Kernel Perspectives , 2010, Information Theoretic Learning.

[30]  A. Benveniste,et al.  Robust identification of a nonminimum phase system: Blind adjustment of a linear equalizer in data communications , 1980 .