Organic Light-Emitting Devices: The Basics

[1]  Stephen R. Forrest,et al.  Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays , 2002 .

[2]  Jisoo Hwang,et al.  Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions , 2005, Nature materials.

[3]  Tomiki Ikeda,et al.  Emission behavior of molecularly doped electroluminescent device using liquid-crystalline matrix , 2000 .

[4]  S. Forrest,et al.  Nearly 100% internal phosphorescence efficiency in an organic light emitting device , 2001 .

[5]  S. Kawata,et al.  Enhancement of electroluminescence through a two-dimensional corrugated metal film by grating-induced surface-plasmon cross coupling. , 2005, Optics letters.

[6]  Junji Watanabe,et al.  Effect of Phase Retardation on Defect‐Mode Lasing in Polymeric Cholesteric Liquid Crystals , 2004 .

[7]  D. J. Broer,et al.  Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient , 1995, Nature.

[8]  T. Asano,et al.  Organic light-emitting diodes with photonic crystals on glass substrate fabricated by nanoimprint lithography , 2007 .

[9]  T. Asano,et al.  Optical and Electrical Characteristics of Organic Light-Emitting Diodes with Two-Dimensional Photonic Crystals in Organic/Electrode Layers , 2005 .

[10]  Sijin Han,et al.  Color tunable metal-cavity organic light-emitting diodes with fullerene layer , 2005 .

[11]  M. Grell,et al.  A Compact Device for the Efficient, Electrically Driven Generation of Highly Circularly Polarized Light , 2001 .

[12]  Zakya H. Kafafi,et al.  Determination of the width of the carrier recombination zone in organic light-emitting diodes , 2003 .

[13]  Y. Sakka,et al.  Chiroptical Properties Induced in Chiral Photonic‐Bandgap Liquid Crystals Leading to a Highly Efficient Laser‐Feedback Effect , 2006 .

[14]  Stephen R. Forrest,et al.  Relationship between electroluminescence and current transport in organic heterojunction light‐emitting devices , 1996 .

[15]  Tetsuo Tsutsui,et al.  Doubling Coupling‐Out Efficiency in Organic Light‐Emitting Devices Using a Thin Silica Aerogel Layer , 2001 .

[16]  Peter A. Hobson,et al.  Surface Plasmon Mediated Emission from Organic Light‐Emitting Diodes , 2002 .

[17]  S. Kelly,et al.  Liquid Crystals for Charge Transport, Luminescence, and Photonics , 2003 .

[18]  C. Weisbuch,et al.  Impact of planar microcavity effects on light extraction-Part II: selected exact simulations and role of photon recycling , 1998 .

[19]  Y. Geng,et al.  Origin of strong chiroptical activities in films of nonafluorenes with a varying extent of pendant chirality. , 2003, Journal of the American Chemical Society.

[20]  J. Kalinowski Electroluminescence in organics , 1999 .

[21]  M. Barnik,et al.  Large Aperture Polarized Light Source and Novel Liquid Crystal Display Operating Modes , 1990 .

[22]  Shanhui Fan,et al.  Extracting Light from Polymer Light‐Emitting Diodes Using Stamped Bragg Gratings , 2004 .

[23]  J. Goudonnet,et al.  Plasma resonance absorption in conical diffraction: effects of groove depth , 1986 .

[24]  S. Kelly,et al.  Highly Circularly Polarized Photoluminescence over a Broad Spectral Range from a Calamitic, Hole‐Transporting, Chiral Nematic Glass and from an Indirectly Excited Dye , 2003 .

[25]  Soon Moon Jeong,et al.  Enhancement of normally directed light outcoupling from organic light-emitting diodes using nanoimprinted low-refractive-index layer , 2008 .

[26]  Soon Moon Jeong,et al.  Enhancement of Light Extraction from Organic Light-Emitting Diodes with Two-Dimensional Hexagonally Nanoimprinted Periodic Structures Using Sequential Surface Relief Grating , 2008 .

[27]  Y. Takanishi,et al.  Electrotunable Non‐reciprocal Laser Emission from a Liquid‐Crystal Photonic Device , 2006 .

[28]  G. Whitesides,et al.  The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer , 1999 .

[29]  Wolfgang Kowalsky,et al.  Organic Electro‐ and Photoluminescent Microcavity Devices , 1998 .

[30]  C. H. Chen,et al.  Electroluminescence of doped organic thin films , 1989 .

[31]  G. Briggs,et al.  Spontaneous Formation of Ordered Lateral Patterns in Polymer Thin‐Film Structures , 2004 .

[32]  Tetsuo Tsutsui,et al.  Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium , 2000 .

[33]  R. Janssen,et al.  CIRCULARLY POLARIZED ELECTROLUMINESCENCE FROM A POLYMER LIGHT-EMITTING DIODE , 1997 .

[34]  L. Mahadevan,et al.  Geometry and physics of wrinkling. , 2003, Physical review letters.

[35]  Klaus Meerholz,et al.  Outsmarting Waveguide Losses in Thin‐Film Light‐Emitting Diodes , 2001 .

[36]  Peter A. Hobson,et al.  The role of surface plasmons in organic light-emitting diodes , 2002 .

[37]  Donal D. C. Bradley,et al.  Angular Dependence of the Emission from a Conjugated Polymer Light‐Emitting Diode: Implications for efficiency calculations , 1994 .

[38]  Y. Okuno,et al.  ENHANCEMENT OF TM-TE MODE CONVERSION CAUSED BY EXCITATION OF SURFACE PLASMONS ON A METAL GRATING AND ITS APPLICATION FOR REFRACTIVE INDEX MEASUREMENT , 2007 .

[39]  Masayuki Fujita,et al.  Theoretical analysis on light-extraction efficiency of organic light-emitting diodes using FDTD and mode-expansion methods , 2005 .

[40]  A. Dodabalapur,et al.  Microcavity effects in organic semiconductors , 1994 .

[41]  Masayuki Fujita,et al.  Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure , 2004 .

[42]  Ananth Dodabalapur,et al.  Efficiency enhancement of microcavity organic light emitting diodes , 1996 .

[43]  Soon Moon Jeong,et al.  Sharply directed emission in microcavity organic light-emitting diodes with a cholesteric liquid crystal film , 2007 .

[44]  Jean-Michel Nunzi,et al.  Emission properties of an organic light-emitting diode patterned by a photoinduced autostructuration process , 2005 .

[45]  Donal D. C. Bradley,et al.  Polarized Luminescence from Oriented Molecular Materials , 1999 .

[46]  R. A. Logan,et al.  Enhanced spectral power density and reduced linewidth at 1.3 μm in an InGaAsP quantum well resonant‐cavity light‐emitting diode , 1992 .

[47]  Soon Moon Jeong,et al.  Highly circularly polarized electroluminescence from organic light-emitting diodes with wide-band reflective polymeric cholesteric liquid crystal films , 2007 .

[48]  Michael D. McGehee,et al.  A theoretical and experimental investigation of light extraction from polymer light-emitting diodes , 2005 .

[49]  Inchaussandague,et al.  Polarization conversion from diffraction gratings made of uniaxial crystals. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[50]  Ifor D. W. Samuel,et al.  Increased Efficiency and Controlled Light Output from a Microstructured Light-Emitting Diode , 2001 .

[51]  Conor F. Madigan,et al.  Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification , 2000 .

[52]  Soon Moon Jeong,et al.  Electrotunable polarization of surface-emitting distributed feedback laser with nematic liquid crystals , 2008 .

[53]  A. Scherer,et al.  30% external quantum efficiency from surface textured, thin‐film light‐emitting diodes , 1993 .

[54]  C. Weisbuch,et al.  Impact of planar microcavity effects on light extraction-Part I: basic concepts and analytical trends , 1998 .

[55]  M. S. Skolnick,et al.  Polarization conversion in the reflectivity properties of photonic crystal waveguides , 2002 .

[56]  U. Scherf,et al.  Circularly polarized electroluminescence from liquid-crystalline chiral polyfluorenes , 2000 .

[57]  Soon Moon Jeong,et al.  Polarization-tunable electroluminescence using phase retardation based on photonic bandgap liquid crystal , 2008 .

[58]  Gustaaf Borghs,et al.  Light-emitting diodes with 31% external quantum efficiency by outcoupling of lateral waveguide modes , 1999 .

[59]  George M. Whitesides,et al.  Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer , 1998, Nature.

[60]  Stephen R. Forrest,et al.  Organic light emitting devices with enhanced outcoupling via microlenses fabricated by imprint lithography , 2006 .

[61]  H. Bässler,et al.  Microcavity effects in a spin‐coated polymer two‐layer system , 1995 .

[62]  Piers Andrew,et al.  Optical properties of a light-emitting polymer directly patterned by soft lithography , 2002 .

[63]  Eun Ha Choi,et al.  Enhanced out-coupling factor of microcavity organic light-emitting devices with irregular microlens array. , 2006, Optics express.

[64]  D. Lin-Vien The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules , 1991 .