Surface Morphologies of Polypropylene Fibers Studied by Atomic Force Microscopy

Surface morphologies of compact-spun polypropylene fibers spun with varying spin and tow draw ratios are characterized with atomic force microscopy (AFM). The surface structures are correlated to x-ray diffraction, birefringence, and fiber tenacity: The surface morphology of as-spun fibers is spherulitic at spin draw ratios lower than 500. With increasing spin draw ratio, the morphologies develop into epitaxially crystallized struc tures, and a shish-kebab morphology is evident with spin draw ratios higher than 1000. When tow drawing is applied to spherulitic as-spun fibers, the surface morphology transforms into a fibrillar structure between draw ratios of 2.0 and 3.0. With the highest applicable draw ratio of 4.4, the microfibrils consist of alternating crystal blocks and amorphous regions with a periodicity of 12.3 nm. The difference between the long period values determined by AFM and SAXS is 2% on average, indicating that the lamellae spacing between the surface and the bulk of the fibers is almost equal. Discontinuities in the long period as a function of spin and tow draw ratios are assigned to the morphological transformations revealed by AFM.

[1]  A. Leijala,et al.  A morphological study of melt-spun polypropylene filaments by atomic force microscopy , 1999 .

[2]  J. Spruiell,et al.  Melt spinning of polypropylene , 1999 .

[3]  H. Cantow,et al.  Scanning force microscopy of high modulus polyethylene fibers , 1995 .

[4]  R. Mülhaupt,et al.  Morphology of syndiotactic polypropylene , 1995 .

[5]  A. E. Woodward Understanding Polymer Morphology , 1995 .

[6]  Harri Lipsanen,et al.  Selective growth of InGaAs on nanoscale InP islands , 1994 .

[7]  H. Schönherr,et al.  MORPHOLOGICAL STUDIES OF ORDERED, SOLID POLYMERS BY SCANNING FORCE MICROSCOPY , 1994 .

[8]  R. W. Callahan,et al.  Structural characterization of Celgard® microporous membrane precursors: Melt‐extruded polyethylene films , 1994 .

[9]  H. Cantow,et al.  Scanning force microscopy of oriented iso- and syndiotactic polypropylene films , 1994 .

[10]  G. Vancso,et al.  Atomic force microscopy of polymer crystals: 7. Chain packing, disorder and imaging of methyl groups in oriented isotactic polypropylene , 1994 .

[11]  M. Möller,et al.  Atomic-force microscopy of gel-drawn ultrahigh-molecular-weight polyethylene , 1993 .

[12]  Andrzej Ziabicki,et al.  Fundamentals of fibre formation: The science of fibre spinning and drawing , 1976 .

[13]  James L. White,et al.  Structure development during polymer processing: Studies of the melt spinning of polyethylene and polypropylene fibers , 1975 .

[14]  J. Spruiell,et al.  Structure development during melt spinning of linear polyethylene fibers , 1974 .

[15]  A. Peterlin,et al.  Molecular model of drawing polyethylene and polypropylene , 1971 .

[16]  F. Baltá-calleja,et al.  Plastic deformation of polypropylene , 1969 .

[17]  R. Samuels Quantitative characterization of deformation in polypropylene fibers , 1968 .

[18]  M. Compostella,et al.  Fasern und Filme aus isotaktischem Polypropylen. Herstellung und Eigenschaften unter Berücksichtigung ihrer kristallinen Textur , 1962 .