Quantum-coherent nanoscience

[1]  W. Wernsdorfer,et al.  Measuring molecular magnets for quantum technologies , 2021, Nature Reviews Physics.

[2]  L. Vandersypen,et al.  Quantum logic with spin qubits crossing the surface code threshold , 2021, Nature.

[3]  M. E. Bathen,et al.  Manipulating Single‐Photon Emission from Point Defects in Diamond and Silicon Carbide , 2021, Advanced Quantum Technologies.

[4]  C. Lutz,et al.  Probing resonating valence bond states in artificial quantum magnets , 2021, Nature Communications.

[5]  S. Tarucha,et al.  Quantum tomography of an entangled three-qubit state in silicon , 2020, Nature Nanotechnology.

[6]  R. Schouten,et al.  A four-qubit germanium quantum processor , 2020, Nature.

[7]  W. Wernsdorfer,et al.  Ultrasensitive nano-optomechanical force sensor operated at dilution temperatures , 2020, Nature Communications.

[8]  K. Itoh,et al.  Conditional quantum operation of two exchange-coupled single-donor spin qubits in a MOS-compatible silicon device , 2020, Nature communications.

[9]  A. Morello,et al.  Semiconductor qubits in practice , 2020, Nature Reviews Physics.

[10]  E. Coronado,et al.  Quantum coherent spin–electric control in a molecular nanomagnet at clock transitions , 2020, Nature Physics.

[11]  Kevin C. Young,et al.  Precision tomography of a three-qubit electron-nuclear quantum processor in silicon , 2021 .

[12]  O. Painter,et al.  Nano-acoustic resonator with ultralong phonon lifetime , 2020, Science.

[13]  L. You Superconducting nanowire single-photon detectors for quantum information , 2020, Nanophotonics.

[14]  P. Treutlein,et al.  Light-mediated strong coupling between a mechanical oscillator and atomic spins 1 meter apart , 2020, Science.

[15]  D. Awschalom,et al.  Optically addressable molecular spins for quantum information processing , 2020, Science.

[16]  S. Coppersmith,et al.  Progress toward a capacitively mediated CNOT between two charge qubits in Si/SiGe , 2020, 2003.06768.

[17]  Alexandre Blais,et al.  Quantum information processing and quantum optics with circuit quantum electrodynamics , 2020, Nature Physics.

[18]  Dirk Englund,et al.  Large-scale integration of artificial atoms in hybrid photonic circuits , 2020, Nature.

[19]  Yasunobu Nakamura,et al.  Entanglement-based single-shot detection of a single magnon with a superconducting qubit , 2019, Science.

[20]  D. Englund,et al.  Experimental demonstration of memory-enhanced quantum communication , 2019, Nature.

[21]  L. Persichetti,et al.  Single-atom electron paramagnetic resonance in a scanning tunneling microscope driven by a radio-frequency antenna at 4 K , 2019, Physical Review Research.

[22]  K. Srinivasan,et al.  Microwave-to-optical transduction using a mechanical supermode for coupling piezoelectric and optomechanical resonators. , 2019, Physical review applied.

[23]  G. Burkard,et al.  Superconductor-semiconductor hybrid cavity quantum electrodynamics , 2019 .

[24]  J. P. Dehollain,et al.  Nagaoka ferromagnetism observed in a quantum dot plaquette , 2019, Nature.

[25]  Jean-Michel Raimond,et al.  Cavity Quantum Electrodynamics , 1993, Quantum Dynamics of Simple Systems.

[26]  J. Koski,et al.  Virtual-photon-mediated spin-qubit–transmon coupling , 2019, Nature Communications.

[27]  J. Meijer,et al.  Colour centre generation in diamond for quantum technologies , 2019, Nanophotonics.

[28]  C. Lutz,et al.  Coherent spin manipulation of individual atoms on a surface , 2019, Science.

[29]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[30]  Mats Eriksson,et al.  Quantum computing with semiconductor spins , 2019, Physics Today.

[31]  Alessandro Chiesa,et al.  Quantum Computers as Universal Quantum Simulators: State‐of‐the‐Art and Perspectives , 2019, Advanced Quantum Technologies.

[32]  M. Y. Simmons,et al.  A two-qubit gate between phosphorus donor electrons in silicon , 2019, Nature.

[33]  D. Rosenberg,et al.  3D integration and packaging for solid-state qubits , 2019, 1906.11146.

[34]  N. T. Son,et al.  Electrical and optical control of single spins integrated in scalable semiconductor devices , 2019, Science.

[35]  F. Bussières,et al.  Nanoscale Quantum Optics , 2019, 1906.07086.

[36]  D. J. Twitchen,et al.  A Ten-Qubit Solid-State Spin Register with Quantum Memory up to One Minute , 2019, Physical Review X.

[37]  Deung-Jang Choi,et al.  Colloquium: Atomic spin chains on surfaces , 2019, Reviews of Modern Physics.

[38]  Fei Yan,et al.  A quantum engineer's guide to superconducting qubits , 2019, Applied Physics Reviews.

[39]  J. Petta,et al.  Shuttling a single charge across a one-dimensional array of silicon quantum dots , 2018, Nature Communications.

[40]  A. Caneschi,et al.  Electric field modulation of magnetic exchange in molecular helices , 2019, Nature Materials.

[41]  T. A. Wilkinson,et al.  Spin-Selective AC Stark Shifts in a Charged Quantum Dot , 2018, 2019 Conference on Lasers and Electro-Optics (CLEO).

[42]  A. Schliesser,et al.  Continuous force and displacement measurement below the standard quantum limit , 2018, Nature Physics.

[43]  T. Kippenberg,et al.  Optical backaction-evading measurement of a mechanical oscillator , 2018, Nature Communications.

[44]  Xi Qin,et al.  A programmable two-qubit solid-state quantum processor under ambient conditions , 2018, npj Quantum Information.

[45]  N. Spagnolo,et al.  Photonic quantum information processing: a review , 2018, Reports on progress in physics. Physical Society.

[46]  S. Loth,et al.  Tunable Spin-Superconductor Coupling of Spin 1/2 Vanadyl Phthalocyanine Molecules. , 2018, Nano letters.

[47]  S. Wehner,et al.  Quantum internet: A vision for the road ahead , 2018, Science.

[48]  Kenji Watanabe,et al.  Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures , 2018, Nature Nanotechnology.

[49]  Ronald Hanson,et al.  Quantum technologies with optically interfaced solid-state spins , 2018, Nature Photonics.

[50]  A. Heinrich,et al.  Probing quantum coherence in single-atom electron spin resonance , 2018, Science Advances.

[51]  N. Kalhor,et al.  Strong spin-photon coupling in silicon , 2017, Science.

[52]  Jacob M. Taylor,et al.  A coherent spin–photon interface in silicon , 2017, Nature.

[53]  D. E. Savage,et al.  A programmable two-qubit quantum processor in silicon , 2017, Nature.

[54]  P. Senellart,et al.  High-performance semiconductor quantum-dot single-photon sources. , 2017, Nature nanotechnology.

[55]  I. Bloch,et al.  Quantum simulations with ultracold atoms in optical lattices , 2017, Science.

[56]  L. Hollenberg,et al.  Atomically engineered electron spin lifetimes of 30 s in silicon , 2017, Science Advances.

[57]  J. R. Petta,et al.  Strong coupling of a single electron in silicon to a microwave photon , 2017, Science.

[58]  D. Englund,et al.  Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride , 2016, Nature Communications.

[59]  J. Lado,et al.  Exchange mechanism for electron paramagnetic resonance of individual adatoms , 2016, 1611.01110.

[60]  A. Schliesser,et al.  Ultra-coherent nanomechanical resonators via soft clamping and dissipation dilution , 2016, Nature nanotechnology.

[61]  Yi Zhou,et al.  Quantum spin liquid states , 2016, 1607.03228.

[62]  D. Englund,et al.  Solid-state single-photon emitters , 2016, Nature Photonics.

[63]  Donghun Lee,et al.  Topical review: spins and mechanics in diamond , 2016, 1609.00418.

[64]  Saeed Fallahi,et al.  High-fidelity entangling gate for double-quantum-dot spin qubits , 2016, 1608.04258.

[65]  J. Güttinger,et al.  Force sensitivity of multilayer graphene optomechanical devices , 2016, Nature Communications.

[66]  M. Chiesa,et al.  Room-Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Molecular Spin Qubits. , 2016, Journal of the American Chemical Society.

[67]  C. Regal,et al.  Laser Cooling of a Micromechanical Membrane to the Quantum Backaction Limit. , 2015, Physical review letters.

[68]  Ania C. Bleszynski Jayich,et al.  Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor. , 2015, Nature nanotechnology.

[69]  Gerhard Klimeck,et al.  Quantum simulation of the Hubbard model with dopant atoms in silicon , 2015, Nature Communications.

[70]  Andrea Morello,et al.  Bell's inequality violation with spins in silicon. , 2015, Nature nanotechnology.

[71]  George Rajna,et al.  Second Quantum Revolution , 2016 .

[72]  Joseph M. Zadrozny,et al.  Millisecond Coherence Time in a Tunable Molecular Electronic Spin Qubit , 2015, ACS central science.

[73]  C. Lutz,et al.  Electron paramagnetic resonance of individual atoms on a surface , 2015, Science.

[74]  A. Clerk,et al.  Quantum squeezing of motion in a mechanical resonator , 2015, Science.

[75]  Adele E. Schmitz,et al.  Isotopically enhanced triple-quantum-dot qubit , 2015, Science Advances.

[76]  G. Kurizki,et al.  Quantum technologies with hybrid systems , 2015, Proceedings of the National Academy of Sciences.

[77]  Manjin Zhong,et al.  Optically addressable nuclear spins in a solid with a six-hour coherence time , 2015, Nature.

[78]  Andreas Reiserer,et al.  Cavity-based quantum networks with single atoms and optical photons , 2014, 1412.2889.

[79]  J. P. Dehollain,et al.  A two-qubit logic gate in silicon , 2014, Nature.

[80]  R. Gross,et al.  On-Chip Generation, Routing, and Detection of Resonance Fluorescence. , 2014, Nano letters.

[81]  J. P. Dehollain,et al.  An addressable quantum dot qubit with fault-tolerant control-fidelity. , 2014, Nature nanotechnology.

[82]  W. Wernsdorfer,et al.  Electrically driven nuclear spin resonance in single-molecule magnets , 2014, Science.

[83]  J. P. Dehollain,et al.  Storing quantum information for 30 seconds in a nanoelectronic device. , 2014, Nature nanotechnology.

[84]  D. Awschalom,et al.  Probing surface noise with depth-calibrated spins in diamond. , 2014, Physical review letters.

[85]  Jan Meijer,et al.  High-fidelity spin entanglement using optimal control , 2013, Nature Communications.

[86]  K. Saeedi,et al.  Room-Temperature Quantum Bit Storage Exceeding 39 Minutes Using Ionized Donors in Silicon-28 , 2013, Science.

[87]  F. Wellstood,et al.  Decoherence in a pair of long-lived Cooper-pair boxes , 2013, 1308.1043.

[88]  D. Wineland Nobel Lecture: Superposition, entanglement, and raising Schrödinger's cat , 2013 .

[89]  C. Regal,et al.  Strong Optomechanical Squeezing of Light , 2013, 1306.1268.

[90]  David J. Wineland,et al.  Superposition, entanglement, and raising Schrödinger's cat , 2013 .

[91]  W. Wernsdorfer,et al.  Strong spin-phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system. , 2013, Nature nanotechnology.

[92]  Bob B. Buckley,et al.  All-optical control of a solid-state spin using coherent dark states , 2013, Proceedings of the National Academy of Sciences.

[93]  F. Nori,et al.  Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems , 2012, 1204.2137.

[94]  J. Chaste,et al.  A nanomechanical mass sensor with yoctogram resolution. , 2012, Nature nanotechnology.

[95]  Evelyn L. Hu,et al.  Ultrafast all-optical switching by single photons , 2011, Nature Photonics.

[96]  J. Verduijn Silicon Quantum Electronics , 2012 .

[97]  B. Hensen,et al.  High-fidelity projective read-out of a solid-state spin quantum register , 2011, Nature.

[98]  M. Aspelmeyer,et al.  Laser cooling of a nanomechanical oscillator into its quantum ground state , 2011, Nature.

[99]  S. Girvin,et al.  Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. , 2011, Physical review letters.

[100]  Lee C. Bassett,et al.  Spin-Light Coherence for Single-Spin Measurement and Control in Diamond , 2010, Science.

[101]  Erik Lucero,et al.  Quantum ground state and single-phonon control of a mechanical resonator , 2010, Nature.

[102]  L. Hollenberg,et al.  Single-shot readout of an electron spin in silicon , 2010, Nature.

[103]  P. Zoller,et al.  A quantum spin transducer based on nanoelectromechanical resonator arrays , 2009, 0908.0316.

[104]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[105]  L. Senelick It (review) , 2008 .

[106]  Thaddeus D. Ladd,et al.  Complete quantum control of a single quantum dot spin using ultrafast optical pulses , 2008, Nature.

[107]  T. Krauss Why do we need slow light , 2008 .

[108]  A. M. Jayich,et al.  High quality mechanical and optical properties of commercial silicon nitride membranes , 2007, 0711.2263.

[109]  Raymond G. Beausoleil,et al.  Spin-flip and spin-conserving optical transitions of the nitrogen-vacancy centre in diamond , 2008 .

[110]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[111]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[112]  S. Blundell,et al.  Will spin-relaxation times in molecular magnets permit quantum information processing? , 2006, Physical review letters.

[113]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[114]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[115]  Pierre M. Petroff,et al.  Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes , 2005, Science.

[116]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[117]  Osamu Wada,et al.  Femtosecond all-optical devices for ultrafast communication and signal processing , 2004 .

[118]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[119]  L. Vandersypen,et al.  Single-shot read-out of an individual electron spin in a quantum dot , 2004, Nature.

[120]  B. Chui,et al.  Single spin detection by magnetic resonance force microscopy , 2004, Nature.

[121]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[122]  F. Jelezko,et al.  Observation of coherent oscillations in a single electron spin. , 2004, Physical review letters.

[123]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[124]  Margaret King,et al.  State of the art and perspectives , 2004, Machine Translation.

[125]  H. Cheong,et al.  Coherent manipulation of electronic States in a double quantum dot. , 2003, Physical review letters.

[126]  G. Milburn,et al.  Quantum technology: the second quantum revolution , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[127]  Daniel Rugar,et al.  Sub-attonewton force detection at millikelvin temperatures , 2001 .

[128]  Michael N. Leuenberger,et al.  Quantum computing in molecular magnets , 2000, Nature.

[129]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[130]  D. Larkman,et al.  Photonic crystals , 1999, International Conference on Transparent Optical Networks (Cat. No. 99EX350).

[131]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[132]  M. Devoret,et al.  Quantum coherence with a single Cooper pair , 1998 .

[133]  Jaw-Shen Tsai,et al.  Spectroscopy of Energy-Level Splitting between Two Macroscopic Quantum States of Charge Coherently Superposed by Josephson Coupling , 1997 .

[134]  J. Wrachtrup,et al.  Scanning confocal optical microscopy and magnetic resonance on single defect centers , 1997 .

[135]  D. Eigler,et al.  Positioning single atoms with a scanning tunnelling microscope , 1990, Nature.

[136]  A. Peres When is a quantum measurement , 1986 .