Enhanced nanomechanical properties of polymer nanocomposites reinforced with surface engineered carbon nanotubes using barium titanate

ABSTRACT This study presents enhanced nanomechanical properties of polypropylene (PP) using surface engineered carbon nanotubes (CNTs) via decoration with barium titanate (BT). The CNTs decorated BT (BT@CNTs) were prepared by hydrothermal and self-assembly approach. The nanoparticles were surface functionalized to enhance dispersion in the PP matrix. The nanocomposites were developed via melt mixing and compression techniques. From the analyses conducted, PP/BT@CNTs nanocomposites showed more uniform microstructures compared to PP/CNTs due to the presence of BT, which assisted CNTs in the dispersion. Although all the nanocomposites revealed higher nanomechanical properties compared to pure PP, it was more pronounced with nanocomposites containing BT@CNTs. Graphical abstract

[1]  O. Popoola,et al.  Nanomechanical evaluation of poly (vinylidene fluoride) nanocomposites reinforced with hybrid graphene nanoplatelets and titanium dioxide , 2021, Polymer Bulletin.

[2]  Anuja H. Karle,et al.  Evaluation of mechanical and thermal properties of epoxy composites reinforced with CaSiO3 particulate fillers , 2021, Materials Today: Proceedings.

[3]  E. Sadiku,et al.  Synthesis and characterisation of polypropylene nanocomposites for food packaging material , 2020 .

[4]  M. Vikulova,et al.  Reinforcing effects of aminosilane-functionalized h-BN on the physicochemical and mechanical behaviors of epoxy nanocomposites , 2020, Scientific Reports.

[5]  M. Abbasi,et al.  Fabrication and investigation of the mechanical properties of PVC/carbon fiber/graphene nanocomposite pipes for oil and gas applications , 2020, Journal of Thermoplastic Composite Materials.

[6]  Weili Wu,et al.  Derived from poplar leaves graphene-modified silicone rubber composites , 2020, Journal of Thermoplastic Composite Materials.

[7]  V. Aigbodion,et al.  Tensile and compressive strength of palm kernel shell particle reinforced polyester composites , 2019, Materials Research Express.

[8]  S. Yetgin Effect of multi walled carbon nanotube on mechanical, thermal and rheological properties of polypropylene , 2019, Journal of Materials Research and Technology.

[9]  R. Ansari,et al.  Creep performance of CNT polymer nanocomposites -An emphasis on viscoelastic interphase and CNT agglomeration , 2019, Composites Part B: Engineering.

[10]  O. Popoola,et al.  Advanced rheological and mechanical properties of three-phase polymer nanocomposites through strong interfacial interaction of graphene and titania , 2019, The International Journal of Advanced Manufacturing Technology.

[11]  A. Popoola,et al.  Enhanced Thermal and Mechanical Properties of Polymer Reinforced with Slightly Functionalized Graphene Nanoplatelets , 2019, Journal of Testing and Evaluation.

[12]  S. Ramay,et al.  Synthesis and Characterization of BaTiO3/Polypyrrole Composites with Exceptional Dielectric Behaviour , 2018, Polymers.

[13]  S. Sarkar,et al.  Structure and rheological behavior of polypropylene interphase at high carbon nanotube concentration , 2018, Polymer.

[14]  R. Ansari,et al.  Effect of nanoparticle aggregation on the creep behavior of polymer nanocomposites , 2018, Composites Science and Technology.

[15]  J. Zha,et al.  Mechanical and dielectric properties of graphene incorporated polypropylene nanocomposites using polypropylene-graft-maleic anhydride as a compatibilizer , 2017 .

[16]  S. Hong,et al.  Improvement of modulus, strength and fracture toughness of CNT/Epoxy nanocomposites through the functionalization of carbon nanotubes , 2017 .

[17]  C. McCarthy,et al.  A review of key developments and pertinent issues in nanoindentation testing of fibre reinforced plastic microstructures , 2017 .

[18]  Chul B. Park,et al.  Conductive network formation and destruction in polypropylene/carbon nanotube composites via crystal control using supercritical carbon dioxide , 2017 .

[19]  Y. Kim,et al.  Enhanced thermal conductivity and mechanical properties of polyurethane composites with the introduction of thermally annealed carbon nanotubes , 2017, Macromolecular Research.

[20]  K. Lozano,et al.  Dodecylamine functionalization of carbon nanotubes to improve dispersion, thermal and mechanical properties of polyethylene based nanocomposites , 2017 .

[21]  Juan Li Multiwalled Carbon Nanotubes Reinforced Polypropylene Composite Material , 2017 .

[22]  Guoping Zhang,et al.  Nanoindentation Characterization of a Ternary Clay-Based Composite Used in Ancient Chinese Construction , 2016, Materials.

[23]  Satish Kumar,et al.  Polypropylene nanocomposites with polymer coated multiwall carbon nanotubes , 2016 .

[24]  Satish Kumar,et al.  High impact strength polypropylene containing carbon nanotubes , 2016 .

[25]  C. McCarthy,et al.  The effects of pile-up, viscoelasticity and hydrostatic stress on polymer matrix nanoindentation , 2016 .

[26]  Mansour N. Al-Otaibi,et al.  Rheological and mechanical properties of polypropylene/calcium carbonate nanocomposites prepared from masterbatch , 2016 .

[27]  S. Hong,et al.  Functionalization of carbon nanotubes for fabrication of CNT/epoxy nanocomposites , 2016 .

[28]  N. Chu,et al.  Enhancement of polarization property of silane-modified BaTiO3 nanoparticles and its effect in increasing dielectric property of epoxy/BaTiO3 nanocomposites , 2016 .

[29]  Weihua Ma,et al.  Polypropylene/hydroxyl-multiwall carbon nanotubes composites: crystallization behavior, mechanical properties, and foaming performance , 2016, Journal of Materials Science.

[30]  Won‐Ki Lee,et al.  Luminescence of Terbium (III) Complexes Incorporated in Carboxylic Acid Functionalized Polystyrene/BaTiO3 Nanocomposites , 2015 .

[31]  Xin Zhang,et al.  Modulation of topological structure induces ultrahigh energy density of graphene/Ba0.6Sr0.4TiO3 nanofiber/polymer nanocomposites , 2015 .

[32]  E. Koumoulos,et al.  Carbon nanotube/polymer nanocomposites: A study on mechanical integrity through nanoindentation , 2015 .

[33]  Shyh-Chour Huang,et al.  Thermal and Mechanical Behavior of Hybrid Polymer Nanocomposite Reinforced with Graphene Nanoplatelets , 2015, Materials.

[34]  K. Chrissafis,et al.  β-Nucleated Polypropylene: Processing, Properties and Nanocomposites , 2015 .

[35]  Ana M. Díez-Pascual,et al.  Nanoindentation in polymer nanocomposites , 2015 .

[36]  F. Mindivan,et al.  Mechanical and tribological performances of polypropylene composites containing multi-walled carbon nanotubes , 2014 .

[37]  Yan-hui Liu,et al.  Structure and tensile properties of polypropylene/carbon nanotubes composites prepared by melt extrusion , 2014 .

[38]  Philip A. Yuya,et al.  Nanomechanical properties of poly(para-phenylene vinylene) determined using quasi-static and dynamic nanoindentation , 2014 .

[39]  D. Jarzabek,et al.  Depth Dependence of Nanoindentation Pile-Up Patterns in Copper Single Crystals , 2014, Metallurgical and Materials Transactions A.

[40]  A. Bhattacharyya,et al.  Graphene reinforced ultra high molecular weight polyethylene with improved tensile strength and creep resistance properties , 2014 .

[41]  S. Fu,et al.  Tribological performance of carbon nanotube–graphene oxide hybrid/epoxy composites , 2014 .

[42]  I. Šmit,et al.  Interfacial and mechanical properties of polypropylene/silica nano- and microcomposites , 2014 .

[43]  S. Thumsorn,et al.  Influence of Ethylene Vinyl Acetate Contents on Properties and Crease Recovery of Slit Yarn from Polypropylene/High Density Polyethylene Blend , 2014 .

[44]  Ayse Aytac,et al.  Tensile and thermomechanical properties of short carbon fiber reinforced polyamide 6 composites , 2013 .

[45]  M. Mariatti,et al.  Effect of thermal conductive fillers on the properties of polypropylene composites , 2013 .

[46]  J. Davim,et al.  Role of carbon nanotubes (CNTs) in improving wear properties of polypropylene (PP) in dry sliding condition , 2013 .

[47]  M. Shokrieh,et al.  Nanoindentation and nanoscratch investigations on graphene-based nanocomposites , 2013 .

[48]  W. Lee,et al.  Electrical and mechanical properties of graphite/maleic anhydride grafted polypropylene nanocomposites , 2013 .

[49]  Xi Zhang,et al.  Electrical conductivity and thermal stability of polypropylene containing well-dispersed multi-walled carbon nanotubes disentangled with exfoliated nanoplatelets , 2012 .

[50]  Fei Xin,et al.  The role of a silane coupling agent in carbon nanotube/polypropylene composites , 2012 .

[51]  K. Chrissafis,et al.  Can nanoparticles really enhance thermal stability of polymers? Part I: An overview on thermal decomposition of addition polymers , 2011 .

[52]  Xingyi Huang,et al.  A review of dielectric polymer composites with high thermal conductivity , 2011, IEEE Electrical Insulation Magazine.

[53]  D. Bikiaris Microstructure and Properties of Polypropylene/Carbon Nanotube Nanocomposites , 2010, Materials.

[54]  Janet Ho,et al.  Characterization of High Temperature Polymer Thin Films for Power Conditioning Capacitors , 2009 .

[55]  Chia‐Chen Li,et al.  An efficient approach to derive hydroxyl groups on the surface of barium titanate nanoparticles to improve its chemical modification ability. , 2009, Journal of colloid and interface science.

[56]  J. Loos,et al.  Isotactic polypropylene/carbon nanotube composites prepared by latex technology. Thermal analysis of carbon nanotube-induced nucleation , 2008 .

[57]  M. Reboredo,et al.  Effect of silane as coupling agent on the dielectric properties of BaTiO3-epoxy composites , 2007 .

[58]  K. Friedrich,et al.  Creep Resistant Polymer Nanocomposites Reinforced with Multiwalled Carbon Nanotubes , 2007 .

[59]  George M. Pharr,et al.  On the measurement of stress–strain curves by spherical indentation , 2001 .