Maximal vertex‐connectivity of $\overrightarrow{S_{n,k}}$

The class of star graphs is a popular topology for interconnection networks. However, it has certain deficiencies. A class of generalization of star graphs called (n, k)-star graphs was introduced by Chiang and Chen to address these issues. In this article we will consider the vertex-connectivity of the directed (n, k)-star graph, , given by Cheng and Lipman, 8, and show that it is maximally connected. © 2005 Wiley Periodicals, Inc. NETWORKS, Vol. 46(3), 154–162 2005

[1]  Wei-Kuo Chiang,et al.  Topological Properties of the (n, k)-Star Graph , 1998, Int. J. Found. Comput. Sci..

[2]  Eddie Cheng,et al.  On the Day-Tripathi orientation of the star graphs: Connectivity , 2000, Inf. Process. Lett..

[3]  Dilip Sarkar,et al.  Optimal Broadcasting on the Star Graph , 1992, IEEE Trans. Parallel Distributed Syst..

[4]  M. Lipman,et al.  Orienting split-stars and alternating group graphs , 2000 .

[5]  Khaled Day,et al.  Embedding Grids, Hypercubes, and Trees in Arrangement Graphs , 1993, 1993 International Conference on Parallel Processing - ICPP'93.

[6]  Kathryn Fraughnaugh,et al.  Introduction to graph theory , 1973, Mathematical Gazette.

[7]  Khaled Day,et al.  Unidirectional Star Graphs , 1993, Inf. Process. Lett..

[8]  Miguel Angel Fiol,et al.  Vertex-symmetric Digraphs with Small Diameter , 1995, Discret. Appl. Math..

[9]  Shahram Latifi,et al.  A Well-Behaved Enumeration of Star Graphs , 1995, IEEE Trans. Parallel Distributed Syst..

[10]  Wei-Kuo Chiang,et al.  On the Arrangement Graph , 1998, Inf. Process. Lett..

[11]  Khaled Day,et al.  Characterization of parallel paths in arrangement graphs , 1998 .

[12]  Jung-Sing Jwo,et al.  Uni-directional Alternating Group Graphs , 1999, J. Inf. Sci. Eng..

[13]  Jung-Sing Jwo,et al.  On container length and connectivity in unidirectional hypercubes , 1998 .

[14]  Wei-Kuo Chiang,et al.  The (n, k)-Star Graph: A Generalized Star Graph , 1995, Inf. Process. Lett..

[15]  Eddie Cheng,et al.  Orienting split-stars and alternating group graphs , 2000, Networks.

[16]  David H. Du,et al.  Unidirectional hypercubes , 1990 .

[17]  Yu-Chee Tseng,et al.  Balanced Spanning Trees in Complete and Incomplete Star Graphs , 1996, IEEE Trans. Parallel Distributed Syst..

[18]  Sheldon B. Akers,et al.  The Star Graph: An Attractive Alternative to the n-Cube , 1994, ICPP.

[19]  Khaled Day,et al.  Embedding of Cycles in Arrangement Graphs , 1993, IEEE Trans. Computers.

[20]  Eddie Cheng,et al.  Unidirectional (n, k)-Star Graphs , 2002, J. Interconnect. Networks.

[21]  Eddie Cheng,et al.  Vulnerability issues of star graphs, alternating group graphs and split-stars: strength and toughness , 2002, Discret. Appl. Math..

[22]  Khaled Day,et al.  Arrangement Graphs: A Class of Generalized Star Graphs , 1992, Inf. Process. Lett..

[23]  Eddie Cheng,et al.  Basic Structures of Some Interconnection Networks , 2002, Electron. Notes Discret. Math..

[24]  Eddie Cheng,et al.  Super Connectivity of Star Graphs, Alternating Group Graphs and Split-Stars , 2001, Ars Comb..

[25]  Jung-Sing Jwo,et al.  On container length and connectivity in unidirectional hypercubes , 1998, Networks.

[26]  Hideo Nakano,et al.  A Broadcasting Algorithm with Time and Message Optimum on Arrangement Graphs , 1998, J. Graph Algorithms Appl..