Effect of building direction on the microstructure and tensile properties of Ti-48Al-2Cr-2Nb alloy additively manufactured by electron beam melting

[1]  C. Yan,et al.  Crystal orientation, crystallographic texture and phase evolution in the Ti–45Al–2Cr–5Nb alloy processed by selective laser melting , 2016 .

[2]  Radovan Kovacevic,et al.  Microstructural modification of Ti–6Al–4V by using an in-situ printed heat sink in Electron Beam Melting® (EBM) , 2015 .

[3]  Chee Kai Chua,et al.  Graded microstructure and mechanical properties of additive manufactured Ti–6Al–4V via electron beam melting , 2015 .

[4]  Ma Qian,et al.  Additive manufacturing of a high niobium-containing titanium aluminide alloy by selective electron beam melting. , 2015 .

[5]  Yuichiro Koizumi,et al.  Phase and grain size inhomogeneity and their influences on creep behavior of Co–Cr–Mo alloy additive manufactured by electron beam melting , 2015 .

[6]  中村貴宏 Fabrication of metal and alloy nanoparticles by high-intensity laser irradiation in solution , 2015 .

[7]  K. Kunze,et al.  Texture, anisotropy in microstructure and mechanical properties of IN738LC alloy processed by selective laser melting (SLM) , 2015 .

[8]  Carolin Körner,et al.  Selective electron beam melting of Ti–48Al–2Nb–2Cr: Microstructure and aluminium loss , 2014 .

[9]  Philip B. Prangnell,et al.  Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti6Al4V by selective electron beam melting , 2013 .

[10]  I. Yadroitsava,et al.  Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder , 2013 .

[11]  S. Biamino,et al.  Electron Beam Melting of High Niobium Containing TiAl Alloy: Feasibility Investigation , 2012 .

[12]  Ryan B. Wicker,et al.  Fabrication of Metal and Alloy Components by Additive Manufacturing: Examples of 3D Materials Science , 2012 .

[13]  L. Murr,et al.  Microstructures for Two-Phase Gamma Titanium Aluminide Fabricated by Electron Beam Melting , 2012, Metallography, Microstructure, and Analysis.

[14]  S. Biamino,et al.  Electron beam melting of Ti–48Al–2Cr–2Nb alloy: Microstructure and mechanical properties investigation , 2011 .

[15]  Ryan B. Wicker,et al.  Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting , 2010 .

[16]  Harald Leitner,et al.  Grain refinement in γ-Ti–Al-based alloys by solid state phase transformations , 2006 .

[17]  Xinhua Wu Review of alloy and process development of TiAl alloys , 2006 .

[18]  J. Bonnentien,et al.  Effects of interstitial oxygen on microstructure and mechanical properties of Ti-48Al-2Cr-2Nb with fully lamellar and duplex microstructures , 2006 .

[19]  Yong Wang,et al.  Grain refinement of a Ti–47Al–8Nb–2Cr alloy through heat treatments , 2005 .

[20]  Q. Xia,et al.  Refining grain size of a TiAl alloy by cyclic heat treatment through discontinuous coarsening , 2003 .

[21]  K. Maruyama,et al.  Stability of lamellar microstructure of hard orientated PST crystal of TiAl alloy , 2003 .

[22]  M. F. Stroosnijder,et al.  The High Temperature Oxidation Behaviour of High and Low Alloyed TiAl-Based Intermetallics. , 2002 .

[23]  M. H. Loretto,et al.  The effect of process parameters and heat treatment on the microstructure of direct laser fabricated TiAl alloy samples , 2001 .

[24]  Edward A. Loria,et al.  Gamma titanium aluminides as prospective structural materials , 2000 .

[25]  T. Nakano,et al.  Stress anomaly in Al-rich Ti-Al single crystals deformed by the motion of 1/2«110] ordinary dislocations , 1998 .

[26]  D. Dimiduk,et al.  Flow behavior of PST and fully lamellar polycrystals of Ti–48Al in the microstrain regime , 1998 .

[27]  H. Inui,et al.  Temperature dependence of yield stress, deformation mode and deformation structure in single crystals of TiAl (Ti−56 at.% Al) , 1997 .

[28]  T. Nakano,et al.  Effect of chemical ordering on the deformation mode of Al-rich Ti-Al single crystals , 1996 .

[29]  Young-Won Kim,et al.  Ordered intermetallic alloys, part III: Gamma titanium aluminides , 1994 .

[30]  T. Nakano,et al.  PLASTIC BEHAVIOUR OF TIAL CRYSTALS CONTAINING A SINGLE SET OF LAMELLAE AT HIGH TEMPERATURES , 1992 .

[31]  D. Dimiduk,et al.  Recent Progress on Intermetallic Alloys for Advanced Aerospace Systems. , 1991 .

[32]  T. Kawabata,et al.  Positive temperature dependence of the yield stress in TiAl L10 type superlattice intermetallic compound single crystals at 293–1273 K , 1985 .

[33]  C. Liu,et al.  ORDERED INTERMETALLIC ALLOYS. , 1984 .

[34]  Lawrence E Murr,et al.  Metallurgy of additive manufacturing: Examples from electron beam melting , 2015 .

[35]  Ola L. A. Harrysson,et al.  Freeform Fabrication of Titanium Aluminide via Electron Beam Melting Using Prealloyed and Blended Powders , 2007 .

[36]  H. Inui,et al.  High-temperature structural intermetallics , 2000 .

[37]  S. Naka,et al.  Phase transformation mechanisms involved in two-phase TiAl-based alloys—II. Discontinuous coarsening and massive-type transformation , 1996 .

[38]  Kyosuke Kishida,et al.  Gamma Titanium Aluminide Alloys , 1994 .