Inferring regular languages and ω-languages

Abstract In 1987 Angluin proposed an algorithm, termed L ⁎ for inferring an unknown regular language using membership and equivalence queries. This algorithm has found many applications, amongst which in the area of system design and verification. These applications challenge the state-of-the art solutions in various directions, in particular, scaling or working with more succinct representations, and dealing with ω-languages, the main model for reasoning about reactive systems. Both extensions confront a similar difficulty. Inference algorithms typically rely on the correspondence between the automata states and the right congruence, henceforth, the residuality property. DFAs enjoy the residuality property (as stated by the Myhill–Nerode Theorem) but more succinct representations such as non-deterministic and alternating finite automata (NFAs and AFAs) in general do not. The situation in the ω-languages realm is even worse, since none of the traditional automata that can express all regular ω-languages enjoys the residuality property. This paper surveys residual models for regular languages and ω-languages and the learning algorithms that can infer these models.

[1]  Yih-Kuen Tsay,et al.  Extending Automated Compositional Verification to the Full Class of Omega-Regular Languages , 2008, TACAS.

[2]  Mihalis Yannakakis,et al.  Black Box Checking , 1999, FORTE.

[3]  Mikolaj Bojanczyk,et al.  Transducers with Origin Information , 2013, ICALP.

[4]  Pavol Cerný,et al.  Synthesis of interface specifications for Java classes , 2005, POPL '05.

[5]  Lu Feng,et al.  Automated Learning of Probabilistic Assumptions for Compositional Reasoning , 2011, FASE.

[6]  A. Nerode,et al.  Linear automaton transformations , 1958 .

[7]  Ludwig Staiger,et al.  Finite-State omega-Languages , 1983, J. Comput. Syst. Sci..

[8]  Yih-Kuen Tsay,et al.  Automated Assume-Guarantee Reasoning through Implicit Learning , 2010, CAV.

[9]  Ludwig Staiger,et al.  Eine Bemerkung über nichtkonstantenfreie sequentielle Operatoren , 1974, J. Inf. Process. Cybern..

[10]  Robert McNaughton,et al.  Testing and Generating Infinite Sequences by a Finite Automaton , 1966, Inf. Control..

[11]  Pedro García,et al.  IDENTIFYING REGULAR LANGUAGES IN POLYNOMIAL TIME , 1993 .

[12]  Martin Leucker,et al.  Learning Meets Verification , 2006, FMCO.

[13]  Lijun Zhang,et al.  A Novel Learning Algorithm for Büchi Automata Based on Family of DFAs and Classification Trees , 2016, TACAS.

[14]  Bengt Jonsson,et al.  Inferring Canonical Register Automata , 2012, VMCAI.

[15]  Helmut Jürgensen,et al.  Onω-Languages whose syntactic monoid is trivial , 2005, International Journal of Computer & Information Sciences.

[16]  Christof Löding,et al.  Alternating Automata and Logics over Infinite Words , 2000, IFIP TCS.

[17]  A. R. Meyer,et al.  Economy of Description by Automata, Grammars, and Formal Systems , 1971, SWAT.

[18]  Jerome A. Feldman,et al.  On the Synthesis of Finite-State Machines from Samples of Their Behavior , 1972, IEEE Transactions on Computers.

[19]  Domagoj Babic,et al.  Sigma*: symbolic learning of input-output specifications , 2013, POPL.

[20]  Bernhard Steffen,et al.  The TTT Algorithm: A Redundancy-Free Approach to Active Automata Learning , 2014, RV.

[21]  Martin Leucker,et al.  Learning Minimal Deterministic Automata from Inexperienced Teachers , 2012, ISoLA.

[22]  Ernst L. Leiss,et al.  Succint Representation of Regular Languages by Boolean Automata , 1981, Theor. Comput. Sci..

[23]  Alexandra Silva,et al.  CALF: Categorical Automata Learning Framework , 2017, CSL.

[24]  Dana Fisman,et al.  Learning Regular Languages via Alternating Automata , 2015, IJCAI.

[25]  Colin de la Higuera,et al.  Inference of [omega]-languages from prefixes , 2004, Theor. Comput. Sci..

[26]  Dana Angluin,et al.  Learning Regular Sets from Queries and Counterexamples , 1987, Inf. Comput..

[27]  Marijn J. H. Heule,et al.  Exact DFA Identification Using SAT Solvers , 2010, ICGI.

[28]  Tao Jiang,et al.  Learning regular languages from counterexamples , 1988, COLT '88.

[29]  Oliver Niese,et al.  An integrated approach to testing complex systems , 2003 .

[30]  Dana Angluin,et al.  Queries and concept learning , 1988, Machine Learning.

[31]  E. Mark Gold,et al.  Language Identification in the Limit , 1967, Inf. Control..

[32]  Jean-Eric Pin,et al.  Infinite words - automata, semigroups, logic and games , 2004, Pure and applied mathematics series.

[33]  Bengt Jonsson,et al.  Active learning for extended finite state machines , 2016, Formal Aspects of Computing.

[34]  Colin de la Higuera,et al.  Inference of omega-Languages from Prefixes , 2001, ALT.

[35]  Frits W. Vaandrager,et al.  Model learning , 2017, Commun. ACM.

[36]  D. Gnanaraj Thomas,et al.  Learning of Bi-ω Languages from Factors , 2012, ICGI.

[37]  Ludwig Staiger,et al.  On Syntactic Congruences for Omega-Languages , 1997, Theor. Comput. Sci..

[38]  Howard Barringer,et al.  Learning to divide and conquer: applying the L* algorithm to automate assume-guarantee reasoning , 2008, Formal Methods Syst. Des..

[39]  Dana Angluin,et al.  The class DBW∩DCW of ω-languages is identifiable in the limit from positive data and membership queries with polynomial time and data , 2016 .

[40]  Dana Fisman,et al.  Learning regular omega languages , 2014, Theor. Comput. Sci..

[41]  André Arnold,et al.  A Syntactic Congruence for Rational omega-Language , 1985, Theor. Comput. Sci..

[42]  Martin Leucker,et al.  Inferring Network Invariants Automatically , 2006, IJCAR.

[43]  Maciej Liskiewicz,et al.  Learning Residual Alternating Automata , 2017, AAAI.

[44]  Oded Maler,et al.  Learning Regular Languages over Large Alphabets , 2014, TACAS.

[45]  Umesh V. Vazirani,et al.  An Introduction to Computational Learning Theory , 1994 .

[46]  Dexter Kozen,et al.  On parallelism in turing machines , 1976, 17th Annual Symposium on Foundations of Computer Science (sfcs 1976).

[47]  Bernhard Steffen,et al.  The Open-Source LearnLib - A Framework for Active Automata Learning , 2015, CAV.

[48]  Ludwig Staiger,et al.  On Syntactic Congruences for Omega-Languages , 1993, Theor. Comput. Sci..

[49]  Loris D'Antoni,et al.  Learning Symbolic Automata , 2017, TACAS.

[50]  Jeffrey Shallit,et al.  On the Number of Distinct Languages Accepted by Finite Automata with n States , 2002, DCFS.

[51]  Mahesh Viswanathan,et al.  LEVER: A Tool for Learning Based Verification , 2006, International Conference on Computer Aided Verification.

[52]  Daniel Kroening,et al.  Learning the Language of Error , 2015, ATVA.

[53]  Amir Pnueli,et al.  On the learnability of infinitary regular sets , 1991, COLT '91.

[54]  E. Mark Gold,et al.  Complexity of Automaton Identification from Given Data , 1978, Inf. Control..

[55]  Frits W. Vaandrager,et al.  Learning I/O Automata , 2010, CONCUR.

[56]  Ahmed Saoudi,et al.  Learning local and recognizable Ω-languages and monadic logic programs , 1994, EuroCOLT.

[57]  Francesco Bergadano,et al.  Learning Behaviors of Automata from Multiplicity and Equivalence Queries , 1994, SIAM J. Comput..

[58]  Joao Marques-Silva,et al.  Efficient Algorithms for the Inference of Minimum Size DFAs , 2001, Machine Learning.

[59]  Klaus W. Wagner A Hierarchy of Regular Sequence Sets , 1975, MFCS.

[60]  Mehryar Mohri,et al.  Learning Weighted Automata , 2015, CAI.

[61]  Dana Angluin Negative results for equivalence queries , 1990, Mach. Learn..

[62]  Nils Jansen,et al.  Regular Model Checking Using Solver Technologies and Automata Learning , 2013, NASA Formal Methods.

[63]  Andreas Podelski,et al.  Ultimately Periodic Words of Rational w-Languages , 1993, MFPS.

[64]  Mahesh Viswanathan,et al.  Using Language Inference to Verify Omega-Regular Properties , 2005, TACAS.

[65]  Benedikt Bollig,et al.  libalf: The Automata Learning Framework , 2010, CAV.

[66]  Aurélien Lemay,et al.  Residual Finite State Automata , 2002, Fundam. Informaticae.

[67]  Ronald L. Rivest,et al.  Inference of finite automata using homing sequences , 1989, STOC '89.

[68]  Dana Fisman,et al.  Families of DFAs as Acceptors of omega-Regular Languages , 2016, MFCS.