Seismic signal recovery based on Earth Q model

A method for seismic time-variant inversion based on the earth Q-model is proposed.Theoretical bounds on the recovery error, and on the localization error are derived.Recovered spikes are close to spikes in the true reflectivity signal.Redundant spikes in the solution, far from the correct support, have small energy.The robustness of the method is demonstrated with synthetic and real data examples. We consider the problem of recovering the underlying reflectivity signal from its seismic trace, taking into account the attenuation and dispersion propagation effects of the reflected waves, in noisy environments. We present an efficient method to perform seismic time-variant inversion based on the earth Q-model. We derive theoretical bounds on the recovery error, and on the localization error. It is shown that the solution consists of recovered spikes which are relatively close to spikes in the true reflectivity signal. In addition, we prove that any redundant spike in the solution, which is far from the correct support, will have small energy. The robustness of our technique is demonstrated using synthetic and real data examples.

[1]  Emmanuel J. Candès,et al.  Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.

[2]  R. Baraniuk,et al.  Compressive Radar Imaging , 2007, 2007 IEEE Radar Conference.

[3]  Yanghua Wang,et al.  A stable and efficient approach of inverse Q filtering , 2002 .

[4]  D. L. Donoho,et al.  Compressed sensing , 2006, IEEE Trans. Inf. Theory.

[5]  Emmanuel J. Candès,et al.  Super-Resolution from Noisy Data , 2012, Journal of Fourier Analysis and Applications.

[6]  Israel Cohen,et al.  Multichannel Semi-blind Deconvolution (MSBD) of seismic signals , 2017, Signal Process..

[7]  Caroline Chaux,et al.  A Primal-Dual Proximal Algorithm for Sparse Template-Based Adaptive Filtering: Application to Seismic Multiple Removal , 2014, IEEE Transactions on Signal Processing.

[8]  D. Donoho,et al.  Atomic Decomposition by Basis Pursuit , 2001 .

[9]  Tadeusz J. Ulrych,et al.  Processing via spectral modeling , 1991 .

[10]  A. Berkhout,et al.  The seismic method in the search for oil and gas: Current techniques and future developments , 1986, Proceedings of the IEEE.

[11]  Jean-Christophe Pesquet,et al.  Euclid in a Taxicab: Sparse Blind Deconvolution with Smoothed ${\ell _1}/{\ell _2}$ Regularization , 2014, IEEE Signal Processing Letters.

[12]  Guochang Liu,et al.  A novel nonstationary deconvolution method based on spectral modeling and variable-step sampling hyperbolic smoothing , 2014 .

[13]  Doron Benzvi,et al.  Blind deconvolution via maximum kurtosis adaptive filtering , 2013, 2016 IEEE International Conference on the Science of Electrical Engineering (ICSEE).

[14]  Gabriel Peyré,et al.  Exact Support Recovery for Sparse Spikes Deconvolution , 2013, Foundations of Computational Mathematics.

[15]  Jerry M. Mendel,et al.  Maximum likelihood detection and estimation of Bernoulli - Gaussian processes , 1982, IEEE Trans. Inf. Theory.

[16]  Leiv-J. Gelius,et al.  INVERSE Q-FILTERING. A SPECTRAL BALANCING TECHNIQUE* , 1987 .

[17]  D. Donoho Superresolution via sparsity constraints , 1992 .

[18]  Yanghua Wang,et al.  Seismic Inverse Q Filtering , 2008 .

[19]  Israel Cohen,et al.  Multichannel Seismic Deconvolution Using Markov–Bernoulli Random-Field Modeling , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Jr. G. Forney,et al.  The viterbi algorithm , 1973 .

[21]  Kjetil F. Kaaresen,et al.  Multichannel blind deconvolution of seismic signals , 1998 .

[22]  Israel Cohen,et al.  Dynamic Programming For Multichannel Blind Seismic Deconvolution , 2007 .

[23]  Israel Cohen,et al.  Multichannel Deconvolution of Seismic Signals Using Statistical MCMC Methods , 2010, IEEE Transactions on Signal Processing.

[24]  David C. Henley,et al.  Gabor deconvolution: Estimating reflectivity by nonstationary deconvolution of seismic data , 2011 .

[25]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[26]  Rui Zhang,et al.  Seismic sparse-layer reflectivity inversion using basis pursuit decomposition , 2011 .

[27]  Israel Cohen,et al.  Multichannel blind seismic deconvolution using dynamic programming , 2008, Signal Process..

[28]  고봉환,et al.  Minimum Entropy Deconvolution을 이용한 회전체 시스템의 결함 모니터링 , 2013 .

[29]  Fuzhen Zhang The Schur complement and its applications , 2005 .

[30]  A. J. Berkhout,et al.  Resolution in seismic trace inversion by parameter estimation , 1985 .

[31]  C. Dossal SPARSE SPIKE DECONVOLUTION WITH MINIMUM SCALE , .

[32]  Tadeusz J. Ulrych,et al.  Estimation of quality factors from CMP records , 2002 .

[33]  Sanyi Yuan,et al.  Sparse reflectivity inversion for nonstationary seismic data , 2014 .

[34]  Shai Dekel,et al.  Stable Support Recovery of Stream of Pulses With Application to Ultrasound Imaging , 2015, IEEE Transactions on Signal Processing.

[35]  R. Tibshirani The Lasso Problem and Uniqueness , 2012, 1206.0313.

[36]  Cheng-Shang Chang Calculus , 2020, Bicycle or Unicycle?.

[37]  T. J. Ulrych,et al.  Application of homomorphic deconvolution to seismology , 1971 .

[38]  R. Wiggins Minimum entropy deconvolution , 1978 .

[39]  Einar Kjartansson,et al.  Constant Q-wave propagation and attenuation , 1979 .

[40]  Thang H. Nguyen High resolution seismic reflectivity inversion , 2008 .

[41]  Carlos Fernandez-Granda Support detection in super-resolution , 2013, ArXiv.

[42]  Yves Goussard,et al.  Multichannel seismic deconvolution , 1993, IEEE Trans. Geosci. Remote. Sens..

[43]  Jerry M. Mendel,et al.  A novel approach to seismic signal processing and modeling , 1981 .

[44]  Mauricio D. Sacchi,et al.  A Fast and Automatic Sparse Deconvolution in the Presence of Outliers , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[45]  H. L. Taylor,et al.  Deconvolution with the l 1 norm , 1979 .

[46]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[47]  Michael Elad,et al.  Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing , 2010 .

[48]  Bernard Chalmond,et al.  An iterative Gibbsian technique for reconstruction of m-ary images , 1989, Pattern Recognit..

[49]  Shai Dekel,et al.  Robust Recovery of Stream of Pulses using Convex Optimization , 2014, ArXiv.

[50]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[51]  N. Ricker THE FORM AND NATURE OF SEISMIC WAVES AND THE STRUCTURE OF SEISMOGRAMS , 1940 .

[52]  Yanghua Wang Frequencies of the Ricker wavelet , 2015 .