Thermodynamic properties of hematite — ilmenite — geikielite solid solutions

AbstractA solution model is developed for rhombohedral oxide solid solutions having compositions within the ternary system ilmenite [(Fe2+sTi4+1−s)A (Fe2+1−sTi4+s)B O3]-geikielite [(Mg2+tTi4+1−t)A (Mg2+1−tTi4+t)B O3]-hematite [(Fe3+)A (Fe3+)B O3]. The model incorporates an expression for the configurational entropy of solution, which accounts for varying degrees of structural long-range order (0≤s, t≤1) and utilizes simple regular solution theory to characterize the excess Gibbs free energy of mixing within the five-dimensional composition-ordering space. The 13 model parameters are calibrated from available data on: (1) the degree of long-range order and the composition-temperature dependence of the $$R\bar 3c - R\bar 3$$ transition along the ilmenite-hematite binary join; (2) the compositions of coexisting olivine and rhombohedral oxide solid solutions close to the Mg−Fe2+ join; (3) the shape of the miscibility gap along the ilmenite-hematite join; (4) the compositions of coexisting spinel and rhombohedral oxide solid solutions along the Fe2+−Fe3+ join. In the course of calibration, estimates are obtained for the reference state enthalpy of formation of ulvöspinel and stoichiometric hematite (−1488.5 and −822.0 kJ/mol at 298 K and 1 bar, respectively). The model involves no excess entropies of mixing nor does it incorporate ternary interaction parameters. The formulation fits the available data and represents an internally consistent energetic model when used in conjuction with the standard state thermodynamic data set of Berman (1988) and the solution theory for orthopyroxenes, olivines and Fe−Mg titanomagnetite-aluminate-chromate spinels developed by Sack and Ghiorso (1989, 1990a, b). Calculated activity-composition relations for the end-members of the series, demonstrate the substantial degree of nonideality associated with interactions between the ordered and disordered structures and the dominant influence of the miscibility gap across much of the ternary system. The predicted shape of the miscibility gap, and the orientation of tie-lines relating the compositions of coexisting phases, display the effects of coupling between the excess enthalpy of solution and the degree of long-range order. One limb of the miscibility gap follows the composititiontemperature surface corresponding to the ternary $$R\bar 3 - R\bar 3c$$ second-order transition.

[1]  R. Dieckmann,et al.  Defects and Cation Diffusion in Magnetite (I) , 1977 .

[2]  Y. Ishikawa An Order-Disorder Transformation Phenomenon in the FeTiO 3 –Fe 2 O 3 Solid Solution Series , 1958 .

[3]  T. Mason,et al.  Defects and Cation Diffusion in Magnetite (III.) Tracerdiffusion of Foreign Tracer Cations as a Function of Temperature and Oxygen Potential , 1978 .

[4]  R. Sack,et al.  Thermodynamic properties of Fe-Mg titaniferous magnetite spinels , 1987 .

[5]  B. Burton Theoretical analysis of chemical and magnetic ordering in the system Fe 2 O 3 -FeTiO 3 , 1985 .

[6]  Y. Ishikawa,et al.  Magnetic Properties of the FeTiO 3 -Fe 2 O 3 Solid Solution Series , 1957 .

[7]  R. Berman,et al.  Heat capacity of minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-Sio2-TiO2-H2O-CO2: representation, estimation, and high temperature extrapolation , 1985 .

[8]  R. Aragón,et al.  Phase and point defect equilibria in the titanomagnetite solid solution , 1982 .

[9]  M. Ghiorso Application of the Darken equation to mineral solid solutions with variable degrees of order-disorder , 1990 .

[10]  B. Burton,et al.  Multicritical Phase Relations in Minerals , 1988 .

[11]  D. Lindsley,et al.  A solution model for coexisting iron–titanium oxides , 1981 .

[12]  M. Ghiorso Modeling magmatic systems; thermodynamic relations , 1987 .

[13]  R. W. Taylor,et al.  Phase equilibria in the system FeO-Fe2O3-TiO2 AT 1300° C. , 1964 .

[14]  E. Chang,et al.  New Approximations to the Regular Solutions. I , 1971 .

[15]  Ishikawa Yoshikazu,et al.  Order—disorder transformation and reverse thermo-remanent magnetism in the FeTiO3Fe2O3 system , 1963 .

[16]  Mark S. Ghiorso,et al.  Importance of considerations of mixing properties in establishing an internally consistent thermodynamic database: thermochemistry of minerals in the system Mg2SiO4-Fe2SiO4-SiO2 , 1989 .

[17]  O. A. Cook,et al.  High-Temperature Heat Contents of the Metatitanates of Calcium, Iron and Magnesium1 , 1946 .

[18]  R. Sack Some constraints on the thermodynamic mixing properties of Fe-Mg orthopyroxenes and olivines , 1980 .

[19]  S. Todd,et al.  Heat Capacities at Low Temperatures and Entropies at 298.16°K. of Titanomagnetite and Ferric Titanate , 1953 .

[20]  R. Berman,et al.  Internally consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-F , 1988 .

[21]  D. Lindsley,et al.  A valid Margules formulation for an asymmetric ternary solution: revision of the olivine-ilmenite thermometer, with applications , 1981 .

[22]  T. Mason,et al.  Defects and Cation Diffusion in Magnetite (V): Electrical Conduction, Cation Distribution and Point Defects in Fe3‐δO4 , 1983 .

[23]  R. Sack Spinels as petrogenetic indicators: Activity-composition relations at low pressures , 1982 .

[24]  Yin-yuan Li Superexchange Interactions and Magnetic Lattices of the Rhombohedral Sesquioxides of the Transition Elements and Their Solid Solutions , 1956 .

[25]  A. Williams,et al.  Magnetization of Ilmenite-Hematite System at Low Temperatures , 1957 .

[26]  D. Lindsley Delimitation of the Hematite-Ilmenite Miscibility Gap , 1973 .

[27]  F. Grønvold,et al.  ALPHA FERRIC OXIDE: LOW TEMPERATURE HEAT CAPACITY AND THERMODYNAMIC FUNCTIONS , 1959 .

[28]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .

[29]  G. Shirane,et al.  Neutron-diffraction study of antiferromagnetic FeTi03 and its solid solutions with α-Fe2O3☆ , 1959 .

[30]  M. Ghiorso,et al.  An internally consistent model for the thermodynamic properties of Fe-Mg-titanomagnetite-aluminate spinels , 1991 .

[31]  Y. Ishikawa Magnetic Properties of Ilmenite-Hematite System at Low Temperature , 1962 .

[32]  M. Ghiorso,et al.  Fe-Ti oxide geothermometry: thermodynamic formulation and the estimation of intensive variables in silicic magmas , 1991 .

[33]  K. Hoffman Cation Diffusion Processes and Self-reversal of Thermoremanent Magnetization in the Ilmenite-Haematite Solid Solution Series , 1975 .

[34]  R. Dieckmann Defects and Cation Diffusion in Magnetite (IV): Nonstoichiometry and Point Defect Structure of Magnetite (Fe3-δO4) , 1982 .

[35]  H. Eugster,et al.  The system Fe-Si-O: Oxygen buffer calibrations to 1,500K , 1983 .

[36]  Mark S. Ghiorso,et al.  Chromian spinels as petrogenetic indicators : thermodynamics and petrological applications , 1991 .

[37]  N. Gokcen Multicomponent regular solutions , 1982 .

[38]  A. Buddington,et al.  Iron-Titanium Oxide Minerals and Synthetic Equivalents , 1964 .

[39]  M. Ghiorso,et al.  Modeling magmatic systems; petrologic applications , 1987 .

[40]  Donald H. Lindsley,et al.  Internally consistent solution models for Fe-Mg-Mn-Ti oxides; Fe-Ti oxides , 1988 .

[41]  F. Grønvold,et al.  Heat capacity and thermodynamic properties of α-Fe2O3 in the region 300–1050 K. antiferromagnetic transition , 1974 .

[42]  G. Nord,et al.  Order-disorder transition-induced twin domains and magnetic properties in ilmenite-hematite , 1989 .

[43]  Mark S. Ghiorso,et al.  Chemical mass transfer in magmatic processes , 1987 .

[44]  A. H. Webster,et al.  The System Iron–Titanium–Oxygen at 1200°C. and Oxygen Partial Pressures Between 1 Atm. and 2 × 10−14 Atm. , 1961 .

[45]  N. Archibald,et al.  MASSIVE.SULFIDE FABRICS AT KAMBALDA AND THEIR RELEVANCE TO THE INFERRED STABILITY OF MONOSULFIDE SOLID.SOLUTION , 1987 .

[46]  D. R. Stull JANAF thermochemical tables , 1966 .

[47]  Ishikawa Yoshikazu Electrical Properties of FeTiO3-Fe2O3 Solid Solution Series , 1958 .

[48]  R. W. Gurry,et al.  Physical chemistry of metals , 1953 .

[49]  R. Kikuchi,et al.  The antiferromagnetic-paramagnetic transition in αFe2O3 in the single prism approximation of the cluster variation method , 1984 .

[50]  B. A. Wechsler,et al.  Crystal structure of ilmenite (FeTiOs) at high temperature and at high pressure , 2007 .

[51]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[52]  B. Burton Thermodynamic analysis of the system Fe2O3-FeTiO3 , 1984 .

[53]  B. Tavger,et al.  Magnetic Symmetry of Crystals , 1968 .