Propositional Dynamic Logic with Storing, Recovering and Parallel Composition

This work extends Propositional Dynamic Logic (PDL) with parallel composition operator and four atomic programs which formalize the storing and recovering of elements in data structures. A generalization of Kripke semantics is proposed that instead of using set of possible states it uses structured sets of possible states. This new semantics allows for representing data structures and using the five new operator one is capable of reasoning about the manipulation of these data structures. The use of the new language (PRSPDL) is illustrated with some examples. We present sound and complete set of axiom schemata and inference rules to prove all the valid formulas for a restricted fragment called RSPDLo.

[1]  Alan Bundy,et al.  Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.

[2]  Mario R. F. Benevides,et al.  On Fork Arrow Logic and its Expressive Power , 2007, J. Philos. Log..

[3]  Jan A. Plaza,et al.  Logics of public communications , 2007, Synthese.

[4]  Peter W. O'Hearn,et al.  Local Reasoning about Programs that Alter Data Structures , 2001, CSL.

[5]  David Peleg,et al.  Concurrent dynamic logic , 1985, STOC '85.

[6]  Marcelo F. Frias,et al.  Fork Algebras in Algebra, Logic and Computer Science , 2002, Fundam. Informaticae.

[7]  Graham Hutton,et al.  Categories, allegories and circuit design , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[8]  David Peleg,et al.  Communication in Concurrent Dynamic Logic , 1987, J. Comput. Syst. Sci..

[9]  Richard E. Ladner,et al.  Propositional Dynamic Logic of Regular Programs , 1979, J. Comput. Syst. Sci..

[10]  Mario R. F. Benevides,et al.  A Propositional Dynamic Logic for CCS Programs , 2008, WoLLIC.

[11]  Peter W. O'Hearn,et al.  Separation Logic Semantics for Communicating Processes , 2008, FICS.

[12]  Alexander K. Petrenko,et al.  Electronic Notes in Theoretical Computer Science , 2009 .

[13]  Mario R. F. Benevides,et al.  A Propositional Dynamic Logic for Concurrent Programs Based on the pi-Calculus , 2010, M4M.

[14]  Journal of the Association for Computing Machinery , 1961, Nature.

[15]  Mario R. F. Benevides,et al.  Squares in Fork Arrow Logic , 2003, J. Philos. Log..

[16]  Alain J. Mayer,et al.  The Complexity of PDL with Interleaving , 1996, Theor. Comput. Sci..

[17]  John C. Reynolds,et al.  Separation logic: a logic for shared mutable data structures , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[18]  P. Veloso,et al.  Fork Algebras: Past, Present and Future , 2004 .

[19]  Yde Venema,et al.  Dynamic Logic by David Harel, Dexter Kozen and Jerzy Tiuryn. The MIT Press, Cambridge, Massachusetts. Hardback: ISBN 0–262–08289–6, $50, xv + 459 pages , 2002, Theory and Practice of Logic Programming.

[20]  Anil Nerode,et al.  Logical Foundations of Computer Science, International Symposium, LFCS 2009, Deerfield Beach, FL, USA, January 3-6, 2009. Proceedings , 1994, LFCS.

[21]  Yi Zhang,et al.  Advances in Logic , 2007 .

[22]  Karl R. Abrahamson Decidability and expressiveness of logics of processes , 1980 .

[23]  Robert Goldblatt,et al.  Parallel action: Concurrent dynamic logic with independent modalities , 1992, Stud Logica.

[24]  Marcelo F. Frias,et al.  Fork Algebras , 1997, Relational Methods in Computer Science.

[25]  Alan Jeffrey,et al.  Allegories of Circuits , 1994, LFCS.

[26]  Jelle Gerbrandy,et al.  Reasoning about Information Change , 1997, J. Log. Lang. Inf..