A Nutrient Sensor Mechanism Controls Drosophila Growth

[1]  K. Inoki,et al.  Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. , 2003, Genes & development.

[2]  P. Léopold,et al.  A new genetic locus controlling growth and proliferation in Drosophila melanogaster. , 2003, Genetics.

[3]  E. Hafen,et al.  Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. , 2003, Molecular cell.

[4]  E. Hafen,et al.  Rheb is an essential regulator of S6K in controlling cell growth in Drosophila , 2003, Nature Cell Biology.

[5]  B. Edgar,et al.  Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins , 2003, Nature Cell Biology.

[6]  B. Edgar,et al.  Rheb promotes cell growth as a component of the insulin/TOR signalling network , 2003, Nature Cell Biology.

[7]  M. Pankratz,et al.  Nutrient control of gene expression in Drosophila: microarray analysis of starvation and sugar‐dependent response , 2002, The EMBO journal.

[8]  C. Duan Specifying the cellular responses to IGF signals: roles of IGF-binding proteins. , 2002, The Journal of endocrinology.

[9]  T. P. Neufeld,et al.  Inhibition of cellular growth and proliferation by dTOR overexpression in Drosophila , 2002, Genesis.

[10]  J. Crespo,et al.  Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. , 2002, Molecular cell.

[11]  O. Hino,et al.  Tsc tumour suppressor proteins antagonize amino-acid–TOR signalling , 2002, Nature Cell Biology.

[12]  K. Inoki,et al.  TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling , 2002, Nature Cell Biology.

[13]  K. Nairz,et al.  Nutrient-Dependent Expression of Insulin-like Peptides from Neuroendocrine Cells in the CNS Contributes to Growth Regulation in Drosophila , 2002, Current Biology.

[14]  J. Avruch,et al.  Raptor, a Binding Partner of Target of Rapamycin (TOR), Mediates TOR Action , 2002, Cell.

[15]  D. Sabatini,et al.  mTOR Interacts with Raptor to Form a Nutrient-Sensitive Complex that Signals to the Cell Growth Machinery , 2002, Cell.

[16]  R. Nusse,et al.  Ablation of Insulin-Producing Neurons in Flies: Growth and Diabetic Phenotypes , 2002, Science.

[17]  R. Garofalo Genetic analysis of insulin signaling in Drosophila , 2002, Trends in Endocrinology & Metabolism.

[18]  P. Kang,et al.  Akt/Protein Kinase B Promotes Organ Growth in Transgenic Mice , 2002, Molecular and Cellular Biology.

[19]  E. Hafen,et al.  dS6K-regulated cell growth is dPKB/dPI(3)K-independent, but requires dPDK1 , 2002, Nature cell biology.

[20]  J. S. Britton,et al.  Drosophila's insulin/PI3-kinase pathway coordinates cellular metabolism with nutritional conditions. , 2002, Developmental Cell.

[21]  D. Stern Body-size evolution: How to evolve a mammoth moth , 2001, Current Biology.

[22]  G. Ooi,et al.  The acid-labile subunit (ALS) of the 150 kDa IGF-binding protein complex: an important but forgotten component of the circulating IGF system. , 2001, The Journal of endocrinology.

[23]  B. Dickson,et al.  The Drosophila Tuberous Sclerosis Complex Gene Homologs Restrict Cell Growth and Cell Proliferation , 2001, Cell.

[24]  A. Gingras,et al.  Regulation of translation initiation by FRAP/mTOR. , 2001, Genes & development.

[25]  E. Hafen,et al.  An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control , 2001, Current Biology.

[26]  D. Le Roith,et al.  Control of growth by the somatropic axis: growth hormone and the insulin-like growth factors have related and independent roles. , 2001, Annual review of physiology.

[27]  T. P. Neufeld,et al.  Regulation of cellular growth by the Drosophila target of rapamycin dTOR. , 2000, Genes & development.

[28]  E. Hafen,et al.  Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. , 2000, Genes & development.

[29]  Tobias Schmelzle,et al.  TOR, a Central Controller of Cell Growth , 2000, Cell.

[30]  E. Hafen,et al.  Genetic control of cell size. , 2000, Current opinion in genetics & development.

[31]  P. Kang,et al.  The conserved phosphoinositide 3‐kinase pathway determines heart size in mice , 2000, The EMBO journal.

[32]  A. Simcox,et al.  minidiscs encodes a putative amino acid transporter subunit required non-autonomously for imaginal cell proliferation , 2000, Mechanisms of Development.

[33]  N. Sonenberg,et al.  Translational control of gene expression , 2000 .

[34]  C. Proud,et al.  Nutrients differentially regulate multiple translation factors and their control by insulin. , 1999, The Biochemical journal.

[35]  M. Pankratz,et al.  Suppression of food intake and growth by amino acids in Drosophila: the role of pumpless, a fat body expressed gene with homology to vertebrate glycine cleavage system. , 1999, Development.

[36]  E. Hafen,et al.  PTEN affects cell size, cell proliferation and apoptosis during Drosophila eye development. , 1999, Development.

[37]  E. Hafen,et al.  Drosophila S6 kinase: a regulator of cell size. , 1999, Science.

[38]  E. Hafen,et al.  Autonomous Control of Cell and Organ Size by CHICO, a Drosophila Homolog of Vertebrate IRS1–4 , 1999, Cell.

[39]  L. Shantz,et al.  Leucine Regulates Translation of Specific mRNAs in L6 Myoblasts through mTOR-mediated Changes in Availability of eIF4E and Phosphorylation of Ribosomal Protein S6* , 1999, The Journal of Biological Chemistry.

[40]  I. Conlon,et al.  Size Control in Animal Development , 1999, Cell.

[41]  P J Bryant,et al.  A new family of growth factors produced by the fat body and active on Drosophila imaginal disc cells. , 1999, Development.

[42]  J. Avruch,et al.  Amino Acid Sufficiency and mTOR Regulate p70 S6 Kinase and eIF-4E BP1 through a Common Effector Mechanism* , 1998, The Journal of Biological Chemistry.

[43]  J. S. Britton,et al.  Environmental control of the cell cycle in Drosophila: nutrition activates mitotic and endoreplicative cells by distinct mechanisms. , 1998, Development.

[44]  C. Kahn,et al.  Bidirectional modulation of insulin action by amino acids. , 1998, The Journal of clinical investigation.

[45]  A. Efstratiadis Genetics of mouse growth. , 1998, The International journal of developmental biology.

[46]  E. Hafen,et al.  The Drosophila phosphoinositide 3‐kinase Dp110 promotes cell growth. , 1996, The EMBO journal.

[47]  C. Kahn,et al.  Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene , 1994, Nature.

[48]  T. Yagi,et al.  Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1 , 1994, Nature.

[49]  D. Hill,et al.  Tissue and serum insulin-like growth factor I (IGF I) concentrations in rats subjected to temporary protein-energy malnutrition early in life. , 1991, Upsala journal of medical sciences.

[50]  M. Locke,et al.  Structure of fat body , 1985 .

[51]  S. Ochoa Regulation of translation. , 1979, Archivos de biologia y medicina experimentales.

[52]  A. Shearn,et al.  In vitro growth of imaginal disks from Drosophila melanogaster. , 1977, Science.

[53]  T. S. P. S.,et al.  GROWTH , 1924, Nature.