Demographic and Genetic Constraints on Evolution

Populations unable to evolve to selectively favored states are constrained. Genetic constraints occur when additive genetic variance in selectively favored directions is absent (absolute constraints) or present but small (quantitative constraints). Quantitative—unlike absolute—constraints are presumed surmountable given time. This ignores that a population might become extinct before reaching the favored state, in which case demography effectively converts a quantitative into an absolute constraint. Here, we derive criteria for predicting when such conversions occur. We model the demography and evolution of populations subject to optimizing selection that experience either a single shift or a constant change in the optimum. In the single‐shift case, we consider whether a population can evolve significantly without declining or else declines temporarily while avoiding low sizes consistent with high extinction risk. We analyze when populations in constantly changing environments evolve sufficiently to ensure long‐term growth. From these, we derive formulas for critical levels of genetic variability that define demography‐caused absolute constraints. The formulas depend on estimable properties of fitness, population size, or environmental change rates. Each extends to selection on multivariate traits. Our criteria define the nearly null space of a population’s G matrix, the set of multivariate directions effectively inaccessible to it via adaptive evolution.

[1]  S. J. Arnold,et al.  Estimating Nonlinear Selection Gradients Using Quadratic Regression Coefficients: Double Or Nothing? , 2008, Evolution; international journal of organic evolution.

[2]  R. Lewontin,et al.  The Genetic Basis of Evolutionary Change , 2022 .

[3]  S. Chenoweth,et al.  Orientation of the Genetic Variance‐Covariance Matrix and the Fitness Surface for Multiple Male Sexually Selected Traits , 2004, The American Naturalist.

[4]  R. Lande Risks of Population Extinction from Demographic and Environmental Stochasticity and Random Catastrophes , 1993, The American Naturalist.

[5]  J. Stinchcombe,et al.  How much do genetic covariances alter the rate of adaptation? , 2009, Proceedings of the Royal Society B: Biological Sciences.

[6]  W. Bradshaw,et al.  Climate change. Evolutionary response to rapid climate change. , 2006, Science.

[7]  Z. Zeng LONG‐TERM CORRELATED RESPONSE, INTERPOPULATION COVARIATION, AND INTERSPECIFIC ALLOMETRY , 1988, Evolution; international journal of organic evolution.

[8]  M. Kirkpatrick Patterns of quantitative genetic variation in multiple dimensions , 2009, Genetica.

[9]  R. Shaw,et al.  Range shifts and adaptive responses to Quaternary climate change. , 2001, Science.

[10]  S. J. Arnold Constraints on Phenotypic Evolution , 1992, The American Naturalist.

[11]  F J Janzen,et al.  Climate change and temperature-dependent sex determination in reptiles. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[12]  A. Sugden ECOLOGY/EVOLUTION: Phenotypic Plasticity , 2004 .

[13]  A. Clark,et al.  Genetic Correlations: The Quantitative Genetics of Evolutionary Constraints , 1987 .

[14]  T. Day 13 – MODELLING THE ECOLOGICAL CONTEXT OF EVOLUTIONARY CHANGE: DÉJÀ VU OR SOMETHING NEW? , 2005 .

[15]  Emma Hine,et al.  Determining the Effective Dimensionality of the Genetic Variance–Covariance Matrix , 2006, Genetics.

[16]  Derek A Roff,et al.  Natural selection and the heritability of fitness components , 1987, Heredity.

[17]  C. M. Pease,et al.  A critique of methods for measuring life history trade‐offs , 1988 .

[18]  D. Houle,et al.  Measuring and comparing evolvability and constraint in multivariate characters , 2008, Journal of evolutionary biology.

[19]  S. J. Arnold,et al.  Resolving the Paradox of Stasis: Models with Stabilizing Selection Explain Evolutionary Divergence on All Timescales , 2007, The American Naturalist.

[20]  M. Kirkpatrick,et al.  Analysis of the inheritance, selection and evolution of growth trajectories. , 1990, Genetics.

[21]  S. Chenoweth,et al.  Phenotypic Divergence along Lines of Genetic Variance , 2004, The American Naturalist.

[22]  G. Wagner The character concept in evolutionary biology , 2001 .

[23]  M. Blows,et al.  THE PHENOTYPIC AND GENETIC COVARIANCE STRUCTURE OF DROSPHILID WINGS , 2007, Evolution; international journal of organic evolution.

[24]  Mark Kirkpatrick,et al.  MEASURING SELECTION AND CONSTRAINT IN THE EVOLUTION OF GROWTH , 1992, Evolution; international journal of organic evolution.

[25]  Ernst Mayr,et al.  Principles of systematic zoology , 1969 .

[26]  C Jessica E Metcalf,et al.  Why evolutionary biologists should be demographers. , 2007, Trends in ecology & evolution.

[27]  T. F. Hansen,et al.  Evolvability and genetic constraint in Dalechampia blossoms: genetic correlations and conditional evolvability. , 2003, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[28]  G. Dickerson Genetic slippage in response to selection for multiple objectives. , 1955, Cold Spring Harbor symposia on quantitative biology.

[29]  D. Houle Comparing evolvability and variability of quantitative traits. , 1992, Genetics.

[30]  P. Phillips,et al.  Comparative quantitative genetics : evolution of the G matrix , 2002 .

[31]  Dolph Schluter,et al.  ADAPTIVE RADIATION ALONG GENETIC LINES OF LEAST RESISTANCE , 1996, Evolution; international journal of organic evolution.

[32]  B. Wallace,et al.  Genetic Load: Its Biological and Conceptual Aspects. , 1971 .

[33]  Mark Kirkpatrick,et al.  Direct Estimation of Genetic Principal Components , 2004, Genetics.

[34]  M. Lynch,et al.  EVOLUTION AND EXTINCTION IN A CHANGING ENVIRONMENT: A QUANTITATIVE‐GENETIC ANALYSIS , 1995, Evolution; international journal of organic evolution.

[35]  M. Kinnison,et al.  Eco-evolutionary conservation biology: contemporary evolution and the dynamics of persistence , 2007 .

[36]  Julie R. Etterson,et al.  EVOLUTIONARY RESPONSES TO CHANGING CLIMATE , 2005 .

[37]  R. Lande,et al.  Stochastic Population Dynamics in Ecology and Conservation , 2003 .

[38]  R. Lande,et al.  GENOTYPE‐ENVIRONMENT INTERACTION AND THE EVOLUTION OF PHENOTYPIC PLASTICITY , 1985, Evolution; international journal of organic evolution.

[39]  M. Lynch Evolution and extinction in response to environ mental change. , 1993 .

[40]  R. Gomulkiewicz,et al.  WHEN DOES EVOLUTION BY NATURAL SELECTION PREVENT EXTINCTION? , 1995, Evolution; international journal of organic evolution.

[41]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[42]  Julie R. Etterson,et al.  Constraint to Adaptive Evolution in Response to Global Warming , 2001, Science.

[43]  Benjamin A. Logsdon,et al.  Neutral Evolution of Multiple Quantitative Characters: A Genealogical Approach , 2007, Genetics.

[44]  Ary A. Hoffmann,et al.  A reassessment of genetic limits to evolutionary change , 2005 .

[45]  J. Mezey,et al.  THE DIMENSIONALITY OF GENETIC VARIATION FOR WING SHAPE IN DROSOPHILA MELANOGASTER , 2005, Evolution; international journal of organic evolution.

[46]  M. Kirkpatrick,et al.  Perils of Parsimony: Properties of Reduced-Rank Estimates of Genetic Covariance Matrices , 2008, Genetics.

[47]  James F. Crow,et al.  Genetic Loads and the Cost of Natural Selection , 1970 .

[48]  J. M. Hoekstra,et al.  The Strength of Phenotypic Selection in Natural Populations , 2001, The American Naturalist.

[49]  A. Hoffmann,et al.  Demographic factors and genetic variation influence population persistence under environmental change , 2009, Journal of evolutionary biology.