Cladding and duct materials for advanced nuclear recycle reactors

The expanded use of nuclear energy without risk of nuclear weapons proliferation and with safe nuclear waste disposal is a primary goal of the Global Nuclear Energy Partnership (GNEP). To achieve that goal the GNEP is exploring advanced technologies for recycling spent nuclear fuel that do not separate pure plutonium, and advanced reactors that consume transuranic elements from recycled spent fuel. The GNEP’s objectives will place high demands on reactor clad and structural materials. This article discusses the materials requirements of the GNEP’s advanced nuclear recycle reactors program.

[1]  Frank A. Garner,et al.  Irradiation Performance of Cladding and Structural Steels in Liquid Metal Reactors , 2006 .

[2]  M. G. Horsten,et al.  Irradiation Behavior of Ferritic-Martensitic 9–12%Cr Steels , 2000 .

[3]  James I. Cole,et al.  Radiation response of a 9 Cr oxide dispersion strengthened ODS to heavy ion irradiation , 2006 .

[4]  M. L. Hamilton,et al.  Fabrication technological development of the oxide dispersion strengthened alloy MA957 for fast reactor applications , 2000 .

[5]  Stuart A. Maloy,et al.  Tensile properties of the NLF reduced activation ferritic/martensitic steels after irradiation in a fast reactor spectrum to a maximum dose of 67 dpa , 2005 .

[6]  B. Dafferner,et al.  Charpy impact properties of low activation alloys for fusion applications after neutron irradiation , 1996 .

[7]  Takayuki Ichikawa,et al.  Composite Materials based on Light Elements for Hydrogen Storage , 2005 .

[8]  Katsunori Abe,et al.  Comparison of Thermal Creep and Irradiation Creep of HT9 Pressurized Tubes at Test Temperatures from ∼490°C to 605°C , 2001 .

[9]  Tetsuji Noda,et al.  Development of low activation Ferritic steels , 1986 .

[10]  R. Barnes,et al.  Embrittlement of Stainless Steels and Nickel-Based Alloys at High Temperature Induced by Neutron Radiation , 1965, Nature.

[11]  E. J. Fulton,et al.  Voids in Irradiated Stainless Steel , 1967, Nature.

[12]  Gaurav Gupta,et al.  Radiation Resistance of Advanced Ferritic-Martensitic Steel HCM12A , 2005 .

[13]  G. J. Butterworth,et al.  Development of low-activation martensitic stainless steels , 1986 .

[14]  Manabu Tamura,et al.  Development of potential low activation ferritic and austenitic steels , 1986 .

[15]  Robert Hill,et al.  Estimated cost for low conversion ratio burners , 2004 .

[16]  M. L. Hamilton,et al.  Tensile properties of reduced activation Fe-9Cr-2W steels after FFTF irradiation , 1994 .

[17]  Steven J. Zinkle,et al.  Materials to deliver the promise of fusion power – progress and challenges , 2004 .

[18]  Todd R. Allen,et al.  Microstructure tailoring for property improvements by grain boundary engineering , 2008 .

[19]  R. W. Swindeman,et al.  Materials and design bases issues in ASME Code Case N-47 , 1993 .

[20]  R. Klueh,et al.  High-Chromium Ferritic and Martensitic Steels for Nuclear Applications , 2001 .

[21]  S. Tsurekawa,et al.  The control of brittleness and development of desirable mechanical properties in polycrystalline systems by grain boundary engineering , 1999 .

[22]  Ronald L. Klueh,et al.  Embrittlement of 9Cr-1MoVNb and 12Cr-1MoVW steels irradiated in HFIR , 1992 .

[23]  P. Maziasz,et al.  Developing an austenitic stainless steel for improved performance in advanced fossil power facilities , 1989 .

[24]  Stuart A. Maloy Materials issues in a high power spallation target , 2005 .

[25]  Ds Gelles Effects of Irradiation on Low Activation Ferritic Alloys: A Review , 1990 .

[26]  Akira Kohyama,et al.  Microstructural changes in Fe-10Cr-2Mo steel by neutron or charged particle irradiation , 1992 .

[27]  M. L. Hamilton,et al.  Effects of radiation on materials: 18. international symposium , 1990 .

[28]  Pj Maziasz Microstructural Stability and Control for Improved Irradiation Resistance and for High-Temperature Strength of Austenitic Stainless Steels , 1988 .

[29]  Bryan A. Chin,et al.  An overview of neutron irradiation effects in LMFBR materials , 1982 .

[30]  Thomas M. Angeliu,et al.  Assessing the Effects of Radiation Damage on Ni-base Alloys for the Prometheus Space Reactor System , 2007 .

[31]  Frank A. Garner,et al.  Stress and Temperature Dependence of Irradiation Creep of Selected FCC and BCC Steels at Low Swelling , 2004 .

[32]  Kenneth J. McClellan,et al.  The effects of fast reactor irradiation conditions on the tensile properties of two ferritic/martensitic steels , 2006 .

[33]  Steven J. Zinkle,et al.  Advanced materials for fusion technology , 2005 .

[34]  K. Q. Bagley,et al.  European development of ferritic-martensitic steels for fast reactor wrapper applications , 1988 .

[35]  J. W. Bennett,et al.  Materials requirements for liquid metal fast breeder reactors , 1978 .

[36]  R. L. Klueh,et al.  The development of ferritic steels for fast induced-radioactivity decay for fusion reactor applications ☆ , 1985 .

[37]  R. L. Klueh,et al.  Reduced Activation Materials for Fusion Reactors , 1990 .