Angiotensin-(1–9) reverses experimental hypertension and cardiovascular damage by inhibition of the angiotensin converting enzyme/Ang II axis

Background: Little is known about the biological effects of angiotensin-(1–9), but available evidence shows that angiotensin-(1–9) has beneficial effects in preventing/ameliorating cardiovascular remodeling. Objective: In this study, we evaluated whether angiotensin-(1–9) decreases hypertension and reverses experimental cardiovascular damage in the rat. Methods and results: Angiotensin-(1–9) (600 ng/kg per min for 2 weeks) reduced already-established hypertension in rats with early high blood pressure induced by angiotensin II infusion or renal artery clipping. Angiotensin-(1–9) also improved cardiac (assessed by echocardiography) and endothelial function in small-diameter mesenteric arteries, cardiac and aortic wall hypertrophy, fibrosis, oxidative stress, collagen and transforming growth factor type &bgr; − 1 protein expression (assessed by western blot). The beneficial effect of angiotensin-(1–9) was blunted by coadministration of the angiotensin type 2(AT2) receptor blocker PD123319 (36 ng/kg per min) but not by coadministration of the Mas receptor blocker A779 (100 ng/kg per min). Angiotensin-(1–9) treatment also decreased circulating levels of Ang II, angiotensin-converting enzyme activity and oxidative stress in aorta and left ventricle. Whereas, Ang-(1–9) increased endothelial nitric oxide synthase mRNA levels in aorta as well as plasma nitrate levels. Conclusion: Angiotensin-(1–9) reduces hypertension, ameliorates structural alterations (hypertrophy and fibrosis), oxidative stress in the heart and aorta and improves cardiac and endothelial function in hypertensive rats. These effects were mediated by the AT2 receptor but not by the angiotensin-(1–7)/Mas receptor axis.

[1]  S. Ergün,et al.  Impact of AT2 Receptor Deficiency on Postnatal Cardiovascular Development , 2012, PloS one.

[2]  V. Velarde,et al.  Differential regulation of collagen secretion by kinin receptors in cardiac fibroblast and myofibroblast. , 2012, Toxicology and applied pharmacology.

[3]  A. Dominiczak,et al.  Angiotensin-(1-9) Attenuates Cardiac Fibrosis in the Stroke-Prone Spontaneously Hypertensive Rat via the Angiotensin Type 2 Receptor , 2012, Hypertension.

[4]  A. Christopoulos,et al.  Relative affinity of angiotensin peptides and novel ligands at AT1 and AT2 receptors. , 2011, Clinical science.

[5]  M. Chiong,et al.  Rho kinase inhibition activates the homologous angiotensin-converting enzyme-angiotensin-(1–9) axis in experimental hypertension , 2011, Journal of hypertension.

[6]  G. Milligan,et al.  Angiotensin1‐9 antagonises pro‐hypertrophic signalling in cardiomyocytes via the angiotensin type 2 receptor , 2011, The Journal of physiology.

[7]  M. Chiong,et al.  Angiotensin-(1–9) regulates cardiac hypertrophy in vivo and in vitro , 2010, Journal of hypertension.

[8]  H. Siragy The angiotensin II type 2 receptor and the kidney , 2010, Journal of the renin-angiotensin-aldosterone system : JRAAS.

[9]  A. Hallberg,et al.  Stimulation of angiotensin AT2 receptors by the non‐peptide agonist, Compound 21, evokes vasodepressor effects in conscious spontaneously hypertensive rats , 2010, British journal of pharmacology.

[10]  J. Sierralta,et al.  Endothelial Epithelial Sodium Channel Inhibition Activates Endothelial Nitric Oxide Synthase via Phosphoinositide 3-Kinase/Akt in Small-Diameter Mesenteric Arteries , 2009, Hypertension.

[11]  Antony Vinh,et al.  Angiotensin AT2 Receptor Stimulation Causes Neuroprotection in a Conscious Rat Model of Stroke , 2009, Stroke.

[12]  M. Cipolla,et al.  Pregnancy Reverses Hypertensive Remodeling of Cerebral Arteries , 2008, Hypertension.

[13]  Hongwei Li,et al.  Effects of Angiotensin Type 2 Receptor Overexpression in the Rostral Ventrolateral Medulla on Blood Pressure and Urine Excretion in Normal Rats , 2008, Hypertension.

[14]  S. Lavandero,et al.  Rho Kinase Activation and Gene Expression Related to Vascular Remodeling in Normotensive Rats With High Angiotensin I–Converting Enzyme Levels , 2007, Hypertension.

[15]  K. Yang,et al.  Angiotensin II Receptor Blockers in Pregnancy: A Case Report and Systematic Review of the Literature , 2007, Hypertension in pregnancy.

[16]  G. Díaz-Araya,et al.  Enalapril Attenuates Downregulation of Angiotensin-Converting Enzyme 2 in the Late Phase of Ventricular Dysfunction in Myocardial Infarcted Rat , 2006, Hypertension.

[17]  R. Carey,et al.  Angiotensin II Type 2 Receptor–Bradykinin B2 Receptor Functional Heterodimerization , 2006, Hypertension.

[18]  T. Hussain,et al.  Angiotensin II AT2 receptors inhibit proximal tubular Na+-K+-ATPase activity via a NO/cGMP-dependent pathway. , 2006, American journal of physiology. Renal physiology.

[19]  C. Ferrario Role of Angiotensin II in Cardiovascular Disease — Therapeutic Implications of More Than a Century of Research , 2006, Journal of the renin-angiotensin-aldosterone system : JRAAS.

[20]  M. Black,et al.  The Angiotensin II Type 2 Receptor Causes Constitutive Growth of Cardiomyocytes and Does Not Antagonize Angiotensin II Type 1 Receptor–Mediated Hypertrophy , 2005, Hypertension.

[21]  S. Lavandero,et al.  Increased Aortic NADPH Oxidase Activity in Rats With Genetically High Angiotensin-Converting Enzyme Levels , 2005, Hypertension.

[22]  C. Ferrario,et al.  Angiotensin II AT1 receptors regulate ACE2 and angiotensin-(1-7) expression in the aorta of spontaneously hypertensive rats. , 2005, American journal of physiology. Heart and circulatory physiology.

[23]  L. Lobos,et al.  Eplerenone blocks nongenomic effects of aldosterone on the Na+/H+ exchanger, intracellular Ca2+ levels, and vasoconstriction in mesenteric resistance vessels. , 2005, Endocrinology.

[24]  N. Hooper,et al.  Angiotensin-converting enzyme-2: a molecular and cellular perspective. , 2004, Cellular and molecular life sciences : CMLS.

[25]  M. Huentelman,et al.  Prevention of Cardiac Hypertrophy by Angiotensin II Type-2 Receptor Gene Transfer , 2004, Hypertension.

[26]  G. Díaz-Araya,et al.  Polymorphism in gene coding for ACE determines different development of myocardial fibrosis in rats. , 2004, American journal of physiology. Heart and circulatory physiology.

[27]  R. Carey,et al.  Angiotensin AT2 Receptors Directly Stimulate Renal Nitric Oxide in Bradykinin B2-Receptor–Null Mice , 2003, Hypertension.

[28]  Thomas Walther,et al.  Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[29]  M. Wellner,et al.  Pressure natriuresis in AT(2) receptor-deficient mice with L-NAME hypertension. , 2003, Journal of the American Society of Nephrology : JASN.

[30]  P. Deddish,et al.  Products of angiotensin I hydrolysis by human cardiac enzymes potentiate bradykinin. , 2002, Journal of molecular and cellular cardiology.

[31]  B. Lévy,et al.  AT2 Receptor-Mediated Relaxation Is Preserved After Long-Term AT1 Receptor Blockade , 2002, Hypertension.

[32]  E. G. Erdös,et al.  Angiotensin 1-9 and 1-7 Release in Human Heart: Role of Cathepsin A , 2002, Hypertension.

[33]  S. Lavandero,et al.  Angiotensin I-converting enzyme gene polymorphism influences chronic hypertensive response in the rat Goldblatt model , 2002, Journal of hypertension.

[34]  R. Carey,et al.  Angiotensin Type 2 Receptor-Mediated Hypotension in Angiotensin Type-1 Receptor-Blocked Rats , 2001, Hypertension.

[35]  K. Robison,et al.  A Novel Angiotensin-Converting Enzyme–Related Carboxypeptidase (ACE2) Converts Angiotensin I to Angiotensin 1-9 , 2000, Circulation research.

[36]  K. Catt,et al.  International union of pharmacology. XXIII. The angiotensin II receptors. , 2000, Pharmacological reviews.

[37]  Y. Mori,et al.  Angiotensin II type 2 receptor overexpression activates the vascular kinin system and causes vasodilation. , 1999, The Journal of clinical investigation.

[38]  E. Escher,et al.  N- and C-terminal structure-activity study of angiotensin II on the angiotensin AT2 receptor. , 1998, European journal of pharmacology.

[39]  T. Borg,et al.  The effects of angiotensin II and specific angiotensin receptor blockers on embryonic cardiac development and looping patterns. , 1997, Developmental biology.

[40]  Z. Shihabi,et al.  Analysis of nitrate in biological fluids by capillary electrophoresis. , 1997, Journal of chromatography. A.

[41]  B. Hogan,et al.  Effects on blood pressure and exploratory behaviour of mice lacking angiotensin II type-2 receptor , 1995, Nature.

[42]  M. Horiuchi,et al.  Characterization of a rat type 2 angiotensin II receptor stably expressed in 293 cells , 1995, Molecular and Cellular Endocrinology.

[43]  D. Campbell,et al.  Effects of converting enzyme inhibitors on angiotensin and bradykinin peptides. , 1994, Hypertension.

[44]  Y. Inada,et al.  [Nonpeptide angiotensin II receptor antagonists]. , 1993, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[45]  S. Whitebread,et al.  Preliminary biochemical characterization of two angiotensin II receptor subtypes. , 1989, Biochemical and biophysical research communications.

[46]  O. Drummer,et al.  Radioimmunoassay for immunoreactive [des-Leu10]-angiotensin I , 1989, Peptides.

[47]  O. Drummer,et al.  Formation of angiotensin II and other angiotensin peptides from des-leu 10-angiotensin I in rat lung and kidney. , 1988, Biochemical pharmacology.

[48]  Jimena Canales,et al.  Beta(2)-adrenergic receptor regulates cardiac fibroblast autophagy and collagen degradation. , 2011, Biochimica et biophysica acta.