Photonic lanterns

Abstract Multimode optical fibers have been primarily (and almost solely) used as “light pipes” in short distance telecommunications and in remote and astronomical spectroscopy. The modal properties of the multimode waveguides are rarely exploited and mostly discussed in the context of guiding light. Until recently, most photonic applications in the applied sciences have arisen from developments in telecommunications. However, the photonic lantern is one of several devices that arose to solve problems in astrophotonics and space photonics. Interestingly, these devices are now being explored for use in telecommunications and are likely to find commercial use in the next few years, particularly in the development of compact spectrographs. Photonic lanterns allow for a low-loss transformation of a multimode waveguide into a discrete number of single-mode waveguides and vice versa, thus enabling the use of single-mode photonic technologies in multimode systems. In this review, we will discuss the theory and function of the photonic lantern, along with several different variants of the technology. We will also discuss some of its applications in more detail. Furthermore, we foreshadow future applications of this technology to the field of nanophotonics.

[1]  Jessica R. Zheng,et al.  GNOSIS: THE FIRST INSTRUMENT TO USE FIBER BRAGG GRATINGS FOR OH SUPPRESSION , 2012, 1212.1201.

[2]  Jean-Louis Lizon,et al.  ESPRESSO: the Echelle spectrograph for rocky exoplanets and stable spectroscopic observations , 2010, Astronomical Telescopes + Instrumentation.

[3]  Nicolas K. Fontaine,et al.  Mode-selective dissimilar fiber photonic-lantern spatial multiplexers for few-mode fiber , 2013 .

[4]  R. McPhedran,et al.  Multipole method for microstructured optical fibers. II. Implementation and results , 2002 .

[5]  J. Bland-Hawthorn,et al.  Multimode fiber devices with single-mode performance. , 2005, Optics letters.

[6]  Keang-Po Ho,et al.  Statistics of Group Delays in Multimode Fiber With Strong Mode Coupling , 2011, Journal of Lightwave Technology.

[7]  J. Bland-Hawthorn,et al.  NanoSpec: a diffraction limited micro-spectrograph for pico- and nano-satellites , 2012, Other Conferences.

[8]  Peter J. Winzer,et al.  MIMO capacities and outage probabilities in spatially multiplexed optical transport systems. , 2011, Optics express.

[9]  V. Van,et al.  Wideband Y-splitter and aperture-assisted coupler based on sub-diffraction confined plasmonic slot waveguides , 2010 .

[10]  Debra A. Fischer,et al.  Use and Limitations of Single- and Multi-Mode Optical Fibers for Exoplanet Detection , 2012 .

[11]  Nick Cvetojevic,et al.  Developing arrayed waveguide grating spectrographs for multi-object astronomical spectroscopy. , 2012, Optics express.

[12]  Richard J. Black,et al.  Tapered single-mode fibres and devices. I. Adiabaticity criteria , 1991 .

[13]  Ibrahim Ozdur,et al.  Free-space to single-mode collection efficiency enhancement using photonic lanterns. , 2013, Optics letters.

[14]  S. Chandrasekhar,et al.  High-Capacity Space-Division-Multiplexed DWDM Transmissions Using Multicore Fiber , 2012, Journal of Lightwave Technology.

[15]  S Berdagué,et al.  Mode division multiplexing in optical fibers. , 1982, Applied optics.

[16]  J. Bland-Hawthorn,et al.  Multi-mode to single-mode conversion in a 61 port Photonic Lantern. , 2010, Optics express.

[17]  Pierre Kern,et al.  Molding the flow of light: Photonics in astronomy , 2012 .

[18]  François Ladouceur,et al.  Multiport single-mode fibre splitters , 1990 .

[19]  Sergio G Leon-Saval,et al.  Beating the classical limit: a diffraction-limited spectrograph for an arbitrary input beam. , 2013, Optics express.

[20]  Jean-Luis Lizon,et al.  Setting New Standards with HARPS , 2003 .

[21]  H. Bulow,et al.  Coherent multimode-fiber MIMO transmission with spatial constellation modulation , 2011, 2011 37th European Conference and Exhibition on Optical Communication.

[22]  Joss Bland-Hawthorn,et al.  Efficient multi-mode to single-mode coupling in a photonic lantern. , 2009, Optics express.

[23]  F. Roddier,et al.  Coupling starlight into single-mode fiber optics. , 1988, Applied optics.

[24]  H. Bulow,et al.  Optical-Mode Demultiplexing by Optical MIMO Filtering of Spatial Samples , 2012, IEEE Photonics Technology Letters.

[25]  Nemanja Jovanovic,et al.  Integrated photonic building blocks for next-generation astronomical instrumentation I: the multimode waveguide , 2012 .

[26]  J. Bland-Hawthorn,et al.  New approach to atmospheric OH suppression using an aperiodic fibre Bragg grating. , 2004, Optics express.

[27]  Roland Ryf,et al.  Geometric requirements for photonic lanterns in space division multiplexing. , 2012, Optics express.

[28]  J. Cruz,et al.  "Photonic lantern" spectral filters in multi-core Fiber. , 2012, Optics express.

[29]  T A Birks,et al.  Ultrafast laser inscription of an integrated photonic lantern. , 2011, Optics express.

[30]  K. Saitoh,et al.  12-core fiber with one ring structure for extremely large capacity transmission. , 2012, Optics express.

[31]  T A Birks,et al.  A complex multi-notch astronomical filter to suppress the bright infrared sky. , 2011, Nature communications.

[32]  S. Randel,et al.  Low-loss mode coupler for mode-multiplexed transmission in few-mode fiber , 2012, OFC/NFOEC.

[33]  B. Dietzek,et al.  Multicore fiber with integrated fiber Bragg gratings for background-free Raman sensing. , 2012, Optics express.

[34]  Roland Ryf,et al.  6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization. , 2011, Optics express.

[35]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light - Second Edition , 2008 .

[36]  T A Birks,et al.  Splice-free interfacing of photonic crystal fibers. , 2005, Optics letters.

[37]  See Leang Chin,et al.  Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses , 2003 .

[38]  N. Jovanovic,et al.  First starlight spectrum captured using an integrated photonic micro-spectrograph , 2012, 1208.4418.

[39]  Christian Schwab,et al.  Single Mode, Extreme Precision Doppler Spectrographs , 2012, Proceedings of the International Astronomical Union.

[40]  David R. Smith,et al.  Plasmonic multi-mode interference couplers. , 2009, Optics express.

[41]  Andrew Chralyvy Plenary paper: The coming capacity crunch , 2009, 2009 35th European Conference on Optical Communication.

[42]  K. Miura,et al.  Writing waveguides in glass with a femtosecond laser. , 1996, Optics letters.

[43]  Nemanja Jovanovic,et al.  Multiband processing of multimode light: combining 3D photonic lanterns with waveguide Bragg gratings , 2013 .

[44]  C. Kittel Introduction to solid state physics , 1954 .

[45]  J. Homola Surface plasmon resonance sensors for detection of chemical and biological species. , 2008, Chemical reviews.

[46]  A. Gnauck,et al.  Mode-Division Multiplexing Over 96 km of Few-Mode Fiber Using Coherent 6 $\,\times\,$6 MIMO Processing , 2012, Journal of Lightwave Technology.

[47]  Roger Haynes,et al.  1:61 photonic lanterns for astrophotometry: A performance study , 2012 .

[48]  N. Fontaine,et al.  Spot-based mode coupler for mode-multiplexed transmission in few-mode fiber , 2012, 2012 IEEE Photonics Society Summer Topical Meeting Series.

[49]  G. Renversez,et al.  Multipole method for microstructured optical fibers , 2002 .

[50]  Xi Chen,et al.  Dual-LP11 mode 4×4 MIMO-OFDM transmission over a two-mode fiber. , 2011, Optics express.

[51]  Norbert Hubin,et al.  Using single-mode fibers to monitor fast Strehl ratio fluctuations - Application to a 3.6 m telescope corrected by adaptive optics , 2000 .

[52]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[53]  Alexander Argyros,et al.  Photonic lanterns: a study of light propagation in multimode to single-mode converters. , 2010, Optics express.

[54]  Mark L. Brongersma,et al.  Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides , 2006 .

[55]  Gang-Ding Peng,et al.  Mode-division multiplexed transmission with inline few-mode fiber amplifier. , 2012, Optics express.

[56]  A. Willner,et al.  Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers , 2013, Science.

[57]  P. Winzer,et al.  Capacity Limits of Optical Fiber Networks , 2010, Journal of Lightwave Technology.

[58]  J. Knight,et al.  All-solid photonic bandgap fiber. , 2004, Optics letters.

[59]  L. Nelson,et al.  Space-division multiplexing in optical fibres , 2013, Nature Photonics.

[60]  Nick Cvetojevic,et al.  PIMMS: photonic integrated multimode microspectrograph , 2010, Astronomical Telescopes + Instrumentation.

[61]  Joss Bland-Hawthorn,et al.  Coupling light into few-mode optical fibres I: The diffraction limit. , 2007, Optics express.