Microstructure Modification of Silicon Nanograins Embedded in Silicon Nitride Thin Films

Microstructure modification of silicon nanograins embedded in silicon nitride films by introducing hydrogen reactant in the plasma enhanced chemical vapour deposition process and their optical properties are analysed using Raman scattering, optical absorption and photoluminescence (PL) measurements. It is found that the silicon nanograins embedded in the silicon nitride (SiNx) matrix are transformed into silicon nanocrystals and the optical properties of the films change dramatically when introducing H2 into Ar-sustained plasma. The optical absorption coefficient of the films within the band gap decreases by about one order of magnitude and the PL intensity increases significantly, compared with that without hydrogen introduction. These results suggest that atomic hydrogen in the plasma has the function of crystallizing silicon nanograins and passivating defects at the silicon nanograins/SiNx interface.

[1]  Intense blue photoluminescence from Si-in-SiNx thin film with high-density nanoparticles , 2005 .

[2]  S. Huet,et al.  Crystal size and temperature measurements in nanostructured silicon using Raman spectroscopy , 2001 .

[3]  Chang-Hee Cho,et al.  Photoluminescence of silicon quantum dots in silicon nitride grown by NH3 and SiH4 , 2005 .

[4]  Robert Elliman,et al.  Effect of particle size on the photoluminescence from hydrogen passivated Si nanocrystals in SiO2 , 2001 .

[5]  A. Pradhan,et al.  Effects of crystallite size distribution on the Raman-scattering profiles of silicon nanostructures , 2005 .

[6]  Chang-Hee Cho,et al.  Effect of hydrogen passivation on charge storage in silicon quantum dots embedded in silicon nitride film , 2005 .

[7]  D. Das,et al.  Role of hydrogen in controlling the growth of μc-Si:H films from argon diluted SiH4 plasma , 2002 .

[8]  D. Mckenzie,et al.  Effect of sputtering-gas pressure on properties of silicon nitride films produced by helicon plasma sputtering , 2001 .

[9]  Z. Jian,et al.  A New Method for Preparation of Nanocrystalline Molybdenum Nitride , 2005 .

[10]  D. Shen,et al.  Visible photoluminescence of Si clusters embedded in silicon nitride films by plasma-enhanced chemical vapor deposition , 2005 .

[11]  Stephen C. Rand,et al.  Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition , 1995 .

[12]  Ian W. Boyd,et al.  Enhancement of luminescence from encapsulated Si nanocrystals in SiO2 with rapid thermal anneals , 2005 .

[13]  J. Chu,et al.  Raman scattering of nanocrystalline silicon embedded in SiO2 , 2000 .

[14]  Wei Yu,et al.  AMORPHOUS SILICON NANO-PARTICLES IN A-SiNx:H PREPARED BY HELICON WAVE PLASMA-ENHANCED CHEMICAL VAPOUR DEPOSITION , 2005 .

[15]  Sandip Tiwari,et al.  A silicon nanocrystals based memory , 1996 .

[16]  Hyunsang Hwang,et al.  Size-dependent charge storage in amorphous silicon quantum dots embedded in silicon nitride , 2003 .

[17]  C. Poweleit,et al.  Morphological and optical properties of Si nanostructures imbedded in SiO2 and Si3N4 films grown by single source chemical vapor deposition , 2002 .

[18]  Harry A. Atwater,et al.  Defect‐related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2 , 1996 .

[19]  T. Tsuruoka,et al.  Structural properties of polycrystalline silicon films prepared at low temperature by plasma chemical vapor deposition , 1991 .

[20]  Xide Xie,et al.  Raman shifts in Si nanocrystals , 1996 .