Decay of correlations for maps with uniformly contracting fibers and logarithm law for singular hyperbolic attractors

We consider maps preserving a foliation which is uniformly contracting and a one-dimensional associated quotient map having exponential convergence to equilibrium (iterates of Lebesgue measure converge exponentially fast to physical measure). We prove that these maps have exponential decay of correlations over a large class of observables. We use this result to deduce exponential decay of correlations for suitable Poincaré maps of a large class of singular hyperbolic flows. From this we deduce a logarithm law for these flows.

[1]  M. Brin,et al.  PARTIALLY HYPERBOLIC DYNAMICAL SYSTEMS , 1974 .

[2]  G. Margulis,et al.  Logarithm laws for flows on homogeneous spaces , 1998, math/9812088.

[3]  C. Robinson Dynamical Systems: Stability, Symbolic Dynamics, and Chaos , 1994 .

[4]  W. Gähler R. Abraham and J. Robbin, Transversal Mappings and Flows. X + 161 S. m. Fig. New York/Amsterdam 1967. W. A. Benjamin, Inc. Preis geb. $ 12,50 , 1969 .

[5]  C. Ionescu,et al.  THEORIE ERGODIQUE POUR DES CLASSES D'OPERATIONS NON COMPLETEMENT CONTINUES , 1950 .

[6]  Y. Pesin Dynamical systems with generalized hyperbolic attractors: hyperbolic, ergodic and topological properties , 1992, Ergodic Theory and Dynamical Systems.

[7]  Christian Bonatti,et al.  Attracteurs de Lorenz de variété instable de dimension arbitraire , 1997 .

[8]  V. Araújo,et al.  Singular-hyperbolic attractors are chaotic , 2005, math/0511352.

[9]  Floris Takens,et al.  Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations : fractal dimensions and infinitely many attractors , 1993 .

[10]  A. Gorodnik,et al.  Khinchin’s theorem for approximation by integral points on quadratic varieties , 2008, 0804.3530.

[11]  Dennis Sullivan,et al.  Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics , 1982 .

[12]  M. J. Pacifico,et al.  A dichotomy for three-dimensional vector fields , 2003, Ergodic Theory and Dynamical Systems.

[13]  C. M. Place,et al.  Ordinary Differential Equations , 1982 .

[14]  D. Anosov,et al.  Ergodic Properties of Geodesic Flows on Closed Riemannian Manifolds of Negative Curvature , 2020 .

[15]  Michael Frazier,et al.  Studies in Advanced Mathematics , 2004 .

[16]  J. Robbin,et al.  Transversal mappings and flows , 2008 .

[17]  S. Galatolo,et al.  Lorenz-like flows: exponential decay of correlations for the Poincaré map, logarithm law, quantitative recurrence , 2009, Ergodic Theory and Dynamical Systems.

[18]  Paulo Varandas,et al.  Robust Exponential Decay of Correlations for Singular-Flows , 2011, 1101.2915.

[19]  R. F. Williams,et al.  Structural stability of Lorenz attractors , 1979 .

[20]  C. A. Morales,et al.  Sectional-hyperbolic systems , 2008, Ergodic Theory and Dynamical Systems.

[21]  David Ruelle Flots qui ne mélangent pas exponentiellement , 1995 .

[22]  Michael Shub,et al.  Ergodicity of Anosov actions , 1972 .

[23]  G. Margulis,et al.  Logarithm laws for unipotent flows, I , 2008, 0811.2806.

[24]  Christian Bonatti,et al.  Dynamics Beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Perspective , 2004 .

[25]  S. Galatolo,et al.  Long hitting time, slow decay of correlations and arithmetical properties , 2008, 0801.3109.

[26]  M. Shub Global Stability of Dynamical Systems , 1986 .

[27]  Mark Pollicott,et al.  On the rate of mixing of Axiom A flows , 1985 .

[28]  J. Palis,et al.  Geometric theory of dynamical systems , 1982 .

[29]  Maria José Pacifico,et al.  Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers , 2004 .

[30]  P. Hartman Ordinary Differential Equations , 1965 .

[31]  Stefano Galatolo,et al.  Shrinking targets in fast mixing flows and the geodesic flow on negatively curved manifolds , 2011, 1101.0486.

[32]  Gerhard Keller,et al.  Generalized bounded variation and applications to piecewise monotonic transformations , 1985 .

[33]  S. Galatolo Dimension and hitting time in rapidly mixing systems , 2006 .

[34]  Christian Bonatti,et al.  Lorenz attractors with arbitrary expanding dimension , 1997 .

[35]  Ioannis Kontoyiannis,et al.  Asymptotic Recurrence and Waiting Times for Stationary Processes , 1998 .

[36]  Stefano Galatolo,et al.  Hitting time in regular sets and logarithm law for rapidly mixing dynamical systems , 2009, 0906.3416.

[37]  Paul C. Shields,et al.  Waiting times: Positive and negative results on the Wyner-Ziv problem , 1993 .

[38]  Dong Han Kim,et al.  The recurrence time for interval exchange maps , 2008 .

[39]  V. Afraimovich,et al.  Statistical properties of 2-D generalized hyperbolic attractors. , 1995, Chaos.

[40]  N. Gourmelon Adapted metrics for dominated splittings , 2007, Ergodic Theory and Dynamical Systems.

[41]  L. Young,et al.  STATISTICAL PROPERTIES OF DYNAMICAL SYSTEMS WITH SOME HYPERBOLICITY , 1998 .

[42]  Daniel D. Joseph,et al.  Nonlinear dynamics and turbulence , 1983 .

[43]  Sanju Velani,et al.  The ergodic theory of shrinking targets , 1995 .

[44]  Mark Holland,et al.  Central limit theorems and invariance principles for Lorenz attractors , 2007 .

[45]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[46]  Thomas Steinberger,et al.  Local dimension of ergodic measures for two-dimensional Lorenz transformations , 2000, Ergodic Theory and Dynamical Systems.

[47]  E. Lorenz Deterministic nonperiodic flow , 1963 .