Contribution of computational mechanics in numerical simulation of machining and blanking: State-of-the-Art

SummaryBlanking and machining are commonly used in processes to obtain the shape of many mechanical pieces. Although considerable number of experimental results exist, certain essential aspects of cutting are still not well understood. This comes from the complexity of the thermomechanical phenomena induced by the material separation as well as from the complexity of the dynamical behaviour of the whole workpiece/tool/machine system. Numerical simulations make it possible to go further in the comprehension and the prediction of machining and cutting processes.In this work the state-of-the art is analysed and we present the most recent developments in the contribution of computational mechanics to numerical simulation of machining and blanking. This contribution is, on one hand, developed at a very global scale calledmacroscopic scale. At this scale a representation of the deformations of the piece is necessary, for example when thin walls are present, and when both predictions of the geometrical state of final surface and/or stability of the process are expected. On the other hand, the contribution is also located at a more local scale: themesoscopic scale. At this scale, the aim is the determination of thermomechanical sollicitations applied to the tool, the simulation of chip formation, or the description of residual states (mechanical, chemical) inside the workpiece after machining.

[1]  D. Steinberg,et al.  A constitutive model for metals applicable at high-strain rate , 1980 .

[2]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[3]  Yusuf Altintas,et al.  Mechanics of boring processes—Part I , 2003 .

[4]  Daniel Rixen,et al.  Théorie des vibrations : application à la dynamique des structures , 1993 .

[5]  Richard E. DeVor,et al.  An Investigation of Variable Spindle Speed Face Milling for Tool-Work Structures With Complex Dynamics, Part 2: Physical Explanation , 1997 .

[6]  G. R. Johnson,et al.  Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures , 1985 .

[7]  Audrey Marty,et al.  Simulation numérique de l'usinage à l'échelle macroscopique : modèles dynamiques de la pièce , 2002 .

[8]  Hui Song,et al.  Thermal modeling for white layer predictions in finish hard turning , 2005 .

[9]  Yuebin Guo,et al.  A FEM study on mechanisms of discontinuous chip formation in hard machining , 2004 .

[10]  Yusuf Altintas,et al.  Analytical Stability Prediction and Design of Variable Pitch Cutters , 1998, Manufacturing Science and Engineering.

[11]  M. E. Merchant Mechanics of the Metal Cutting Process. I. Orthogonal Cutting and a Type 2 Chip , 1945 .

[12]  S. Engin Kilic,et al.  A comparison of orthogonal cutting data from experiments with three different finite element models , 2004 .

[13]  Jonathan Richard Shewchuk,et al.  Sweep algorithms for constructing higher-dimensional constrained Delaunay triangulations , 2000, SCG '00.

[14]  Albert J. Shih Finite element analysis of orthogonal metal cutting mechanics , 1996 .

[15]  Philippe Lorong,et al.  The constrained natural element method (C-NEM) for treating thermal models involving moving interfaces , 2005 .

[16]  John S. Strenkowski,et al.  Finite element models of orthogonal cutting with application to single point diamond turning , 1988 .

[17]  O. W. Dillon,et al.  Thermo-Viscoplastic Modeling of Machining Process Using a Mixed Finite Element Method , 1996 .

[18]  Ted Belytschko,et al.  Volumetric locking in the element free Galerkin method , 1999 .

[19]  Allan D. Spence,et al.  On the dynamics of ball end milling: modeling of cutting forces and stability analysis , 1998 .

[20]  William K. Rule,et al.  A revised form for the Johnson-Cook strength model , 1998 .

[21]  Shaik Jeelani,et al.  RESIDUAL STRESSES IN MACHINING USING FINITE ELEMENT METHOD. , 1983 .

[22]  Yusuf Altintas,et al.  Analytical Prediction of Chatter Stability in Milling—Part II: Application of the General Formulation to Common Milling Systems , 1998 .

[23]  Robert B. Jerard,et al.  Sculptured Surface Machining , 1998 .

[24]  I. Babuska,et al.  Adaptive approaches and reliability estimations in finite element analysis , 1979 .

[25]  Jonathan Richard Shewchuk,et al.  Tetrahedral mesh generation by Delaunay refinement , 1998, SCG '98.

[26]  Sung-Lim Ko,et al.  Burr formation and fracture in oblique cutting , 1996 .

[27]  Toshiyuki Obikawa,et al.  Prediction model of surface residual stress within a machined surface by combining two orthogonal plane models , 2004 .

[28]  Byung-Min Kim,et al.  Rigid-thermoviscoplastic finite element simulation of non-steady-state orthogonal cutting , 2002 .

[29]  Yusuf Altintas,et al.  Analytical Prediction of Chatter Stability in Milling—Part I: General Formulation , 1998 .

[30]  Ted Belytschko,et al.  An error estimate in the EFG method , 1998 .

[31]  Tarek Mabrouki,et al.  Prédiction du comportement vibratoire du fraisage latéral de finition des pièces à parois minces , 2002 .

[32]  Yusuf Altintas,et al.  Mechanics and dynamics of general milling cutters.: Part I: helical end mills , 2001 .

[33]  J. C. Simo,et al.  Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory , 1992 .

[34]  J. Chaboche,et al.  Mechanics of Solid Materials , 1990 .

[35]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[36]  Yung C. Shin,et al.  Material Constitutive Modeling Under High Strain Rates and Temperatures Through Orthogonal Machining Tests , 1997, Manufacturing Science and Engineering: Volume 2.

[37]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[38]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[39]  Y. Shin,et al.  Thermo-mechanical modeling of orthogonal machining process by finite element analysis , 1999 .

[40]  J. Schmidt,et al.  2D FEM estimate of tool wear in turning operation , 2005 .

[41]  Wing Kam Liu,et al.  Mesh-free simulations of shear banding in large deformation , 2000 .

[42]  F. Chinesta,et al.  A new extension of the natural element method for non‐convex and discontinuous problems: the constrained natural element method (C‐NEM) , 2004 .

[43]  Li,et al.  Moving least-square reproducing kernel methods (I) Methodology and convergence , 1997 .

[44]  Klaus-Jürgen Bathe,et al.  Error indicators and adaptive remeshing in large deformation finite element analysis , 1994 .

[45]  M. Sambridge,et al.  Geophysical parametrization and interpolation of irregular data using natural neighbours , 1995 .

[46]  R. A. Uras,et al.  Enrichment of the Finite Element Method With the Reproducing Kernel Particle Method , 1995 .

[47]  M. G. Stevenson,et al.  Using the Finite Element Method to Determine Temperature Distributions in Orthogonal Machining , 1974 .

[48]  Shuodao Wang,et al.  A Mixed-Mode Crack Analysis of Isotropic Solids Using Conservation Laws of Elasticity , 1980 .

[49]  Valery R. Marinov,et al.  Hybrid analytical–numerical solution for the shear angle in orthogonal metal cutting — Part I: theoretical foundation , 2001 .

[50]  Jean-Louis Chaboche,et al.  Mechanics of Solid Materials , 1990 .

[51]  Henry T. Y. Yang,et al.  Adaptive 2D finite element simulation of metal forming processes , 1989 .

[52]  Geoffrey Ingram Taylor,et al.  The Latent Energy Remaining in a Metal after Cold Working , 1934 .

[53]  Kokichi Sugihara,et al.  Improving continuity of Voronoi-based interpolation over Delaunay spheres , 2002, Comput. Geom..

[54]  Elisabetta Ceretti,et al.  Turning simulations using a three-dimensional FEM code , 2000 .

[55]  A. Molinari,et al.  Thermomechanical modelling of oblique cutting and experimental validation , 2004 .

[56]  C. H. Moon,et al.  A Study on the Microcutting for Configuration of Tools using Molecular Dynamics , 1995 .

[57]  A. S. Branis,et al.  Finite element simulation of chip formation in orthogonal metal cutting , 2001 .

[58]  Martin Bäker,et al.  The influence of thermal conductivity on segmented chip formation , 2003 .

[59]  Kyriakos Komvopoulos,et al.  Finite Element Modeling of Orthogonal Metal Cutting , 1991 .

[60]  En-Jui Lee Elastic-Plastic Deformation at Finite Strains , 1969 .

[61]  Paul K. Wright,et al.  Further Developments in Applying the Finite Element Method to the Calculation of Temperature Distributions in Machining and Comparisons With Experiment , 1983 .

[62]  B. Moran,et al.  Stabilized conforming nodal integration in the natural‐element method , 2004 .

[63]  Fabrizio Micari,et al.  Material characterization for the prediction of ductile fracture occurrence: An inverse approach , 1996 .

[64]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[65]  E. Govekar,et al.  ON STABILITY PREDICTION FOR LOW RADIAL IMMERSION MILLING , 2005 .

[66]  Alan Needleman,et al.  Finite element analyses of shear localization in rate and temperature dependent solids , 1986 .

[67]  T. Belytschko,et al.  Element-free Galerkin method: Convergence of the continuous and discontinuous shape functions , 1997 .

[68]  Chi King Lee,et al.  On error estimation and adaptive refinement for element free Galerkin method. Part I: stress recovery and a posteriori error estimation , 2004 .

[69]  T. Belytschko,et al.  THE NATURAL ELEMENT METHOD IN SOLID MECHANICS , 1998 .

[70]  Kornel Ehmann,et al.  Machining Process Modeling: A Review , 1997 .

[71]  Jiun-Shyan Chen,et al.  Adaptive Galerkin Particle Method , 2003 .

[72]  Yusuf Altintas,et al.  Mechanics and dynamics of general milling cutters.: Part II: inserted cutters , 2001 .

[73]  P. Ladevèze,et al.  ERROR ESTIMATION AND ADAPTIVITY IN ELASTOPLASTICITY , 1996 .

[74]  Sooi-Thor Tan,et al.  Incremental tessellation of trimmed parametric surfaces , 2000, Comput. Aided Des..

[75]  Jaroslav Mackerle,et al.  Finite-element analysis and simulation of machining: a bibliography (1976–1996) , 1999 .

[76]  Jiun-Shyan Chen,et al.  Non‐linear version of stabilized conforming nodal integration for Galerkin mesh‐free methods , 2002 .

[77]  Chong Nam Chu,et al.  Cutting force prediction of sculptured surface ball-end milling using Z-map , 2000 .

[78]  Yusuf Altintas,et al.  Mechanism of Cutting Force and Surface Generation in Dynamic Milling , 1991 .

[79]  J. C. Simo,et al.  Associated coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation , 1992 .

[80]  E. Schönhardt,et al.  Über die Zerlegung von Dreieckspolyedern in Tetraeder , 1928 .

[81]  T. Özel,et al.  Determination of work material flow stress and friction for FEA of machining using orthogonal cutting tests , 2004 .

[82]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[83]  Pierre Ladevèze,et al.  Nonlinear Computational Structural Mechanics , 1999 .

[84]  H. E. Merritt Theory of Self-Excited Machine-Tool Chatter: Contribution to Machine-Tool Chatter Research—1 , 1965 .

[85]  Michael Ortiz,et al.  Adaptive mesh refinement in strain localization problems , 1991 .

[86]  A. Moufki,et al.  A new thermomechanical model of cutting applied to turning operations. Part II. Parametric study , 2005 .

[87]  V. D. Ivanov,et al.  The non-Sibsonian interpolation : A new method of interpolation of the values of a function on an arbitrary set of points , 1997 .

[88]  Martin Bäker,et al.  Finite element investigation of the flow stress dependence of chip formation , 2005 .

[89]  Taylan Altan,et al.  A finite element analysis of orthogonal machining using different tool edge geometries , 2004 .

[90]  D. Play,et al.  Dynamic Behavior of a Thin-Walled Cylindrical Workpiece During the Turning-Cutting Process, Part 2: Experimental Approach and Validation , 2002 .

[91]  Elisabetta Ceretti,et al.  FEM simulation of orthogonal cutting: serrated chip formation , 1999 .

[92]  E. J. Kansa,et al.  Application of the Multiquadric Method for Numerical Solution of Elliptic Partial Differential Equations , 2022 .

[93]  P.L.B. Oxley,et al.  A universal slip-line model with non-unique solutions for machining with curled chip formation and a restricted contact tool , 2001 .

[94]  R. Sibson A vector identity for the Dirichlet tessellation , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[95]  M. Ortiz,et al.  Modelling and simulation of high-speed machining , 1995 .

[96]  Jiun-Shyan Chen,et al.  Large deformation analysis of rubber based on a reproducing kernel particle method , 1997 .

[97]  Manuel Doblaré,et al.  Imposing essential boundary conditions in the natural element method by means of density-scaled?-shapes , 2000 .

[98]  Martin Bäker,et al.  A finite element model of high speed metal cutting with adiabatic shearing , 2002 .

[99]  Klaus-Jürgen Bathe,et al.  A hyperelastic‐based large strain elasto‐plastic constitutive formulation with combined isotropic‐kinematic hardening using the logarithmic stress and strain measures , 1990 .

[100]  Richard E. DeVor,et al.  Nonlinear influence of effective lead angle in turning process stability , 2002 .

[101]  J. H. Dautzenberg,et al.  Material behaviour in metal cutting: strains, strain rates and temperatures in chip formation , 2002 .

[102]  M. Ortiz,et al.  A material‐independent method for extending stress update algorithms from small-strain plasticity to finite plasticity with multiplicative kinematics , 1992 .

[103]  Richard E. DeVor,et al.  An Investigation of Variable Spindle Speed Face Milling for Tool-Work Structures With Complex Dynamics, Part 1: Simulation Results , 1997 .

[104]  A. Moufki,et al.  A new thermomechanical model of cutting applied to turning operations. Part I. Theory , 2005 .

[105]  Zone-Ching Lin,et al.  Fundamental modeling for oblique cutting by thermo-elastic-plastic FEM , 1999 .

[106]  Yusuf Altintas,et al.  MODELING APPROACHES AND SOFTWARE FOR PREDICTING THE PERFORMANCE OF MILLING OPERATIONS AT MAL-UBC , 2000 .

[107]  Minghui Hao,et al.  Geometric Generating Mechanism of Machined Surface by Ball-nosed End Milling , 2001 .

[108]  Philippe Lorong,et al.  Simulating Dynamic Thermo-Elasto-Plasticity in large Transformations with Adaptive Refinement in the NEM. Application to Shear Banding , 2005 .

[109]  Larsgunnar Nilsson,et al.  An ALE formulation for the solution of two-dimensional metal cutting problems , 1999 .

[110]  Fathy Ismail,et al.  A new method for the identification of stability lobes in machining , 1997 .

[111]  Svetan Ratchev,et al.  Milling error prediction and compensation in machining of low-rigidity parts , 2004 .

[112]  Hédi Hamdi,et al.  Numerical modelling of orthogonal cutting: influence of numerical parameters , 2005 .

[113]  Chi King Lee,et al.  On error estimation and adaptive refinement for element free Galerkin method: Part II: adaptive refinement , 2004 .

[114]  Pierre Joyot,et al.  Arbitrary Lagrangian-Eulerian thermomechanical finite-element model of material cutting , 1993 .

[115]  David R. Owen,et al.  On adaptive strategies for large deformations of elasto-plastic solids at finite strains : computational issues and industrial applications , 1999 .

[116]  Jiun-Shyan Chen,et al.  Filters, reproducing kernel, and adaptive meshfree method , 2003 .

[117]  Olivier Dalverny,et al.  2D AND 3D NUMERICAL MODELS OF METAL CUTTING WITH DAMAGE EFFECTS. , 2004 .

[118]  Belytschko Fission-fusion adaptivity in finite elements for nonlinear dynamics of shells. Annual technical report, 1 October 1987-30 September 1988 , 1988 .

[119]  K. Bathe Finite Element Procedures , 1995 .

[120]  S. Lin,et al.  A Coupled Finite Element Model of Thermo-Elastic-Plastic Large Deformation for Orthogonal Cutting , 1992 .

[121]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[122]  Richard E. DeVor,et al.  Estimation of the specific cutting pressures for mechanistic cutting force models , 2001 .