High-Throughput Time-Resolved Photoluminescence Study of Composition- and Size-Selected Aqueous Ag–In–S Quantum Dots

[1]  D. Zahn,et al.  Ultra-small aqueous glutathione-capped Ag–In–Se quantum dots: luminescence and vibrational properties , 2020, RSC advances.

[2]  C. Brabec,et al.  Composition-Dependent Optical Band Bowing, Vibrational, and Photochemical Behavior of Aqueous Glutathione-Capped (Cu, Ag)–In–S Quantum Dots , 2020 .

[3]  Arunava Gupta,et al.  Multinary copper-based chalcogenide nanocrystal systems from the perspective of device applications , 2020, Nanoscale advances.

[4]  Qiang Su,et al.  Suppressing Förster Resonance Energy Transfer in Close‐Packed Quantum‐Dot Thin Film: Toward Efficient Quantum‐Dot Light‐Emitting Diodes with External Quantum Efficiency over 21.6% , 2020, Advanced Optical Materials.

[5]  A. Pron,et al.  Synthesis, photophysical properties and surface chemistry of chalcopyrite-type semiconductor nanocrystals , 2019, Journal of Materials Chemistry C.

[6]  O. Stroyuk,et al.  Temperature-Dependent Photoluminescence of Silver-Indium-Sulfide Nanocrystals in Aqueous Colloidal Solutions. , 2019, Chemphyschem : a European journal of chemical physics and physical chemistry.

[7]  D. Zahn,et al.  Inherently Broadband Photoluminescence in Ag–In–S/ZnS Quantum Dots Observed in Ensemble and Single-Particle Studies , 2019, The Journal of Physical Chemistry C.

[8]  X. Bai,et al.  Optical Properties, Synthesis, and Potential Applications of Cu-Based Ternary or Quaternary Anisotropic Quantum Dots, Polytypic Nanocrystals, and Core/Shell Heterostructures , 2019, Nanomaterials.

[9]  Xiaohui Xie,et al.  Size-Dependent Band-Gap and Molar Absorption Coefficients of Colloidal CuInS2 Quantum Dots , 2018, ACS nano.

[10]  O. Stroyuk,et al.  Solar light harvesting with multinary metal chalcogenide nanocrystals. , 2018, Chemical Society reviews.

[11]  D. Gamelin,et al.  Valence-Band Electronic Structures of Cu+-Doped ZnS, Alloyed Cu–In–Zn–S, and Ternary CuInS2 Nanocrystals: A Unified Description of Photoluminescence across Compositions , 2018, The Journal of Physical Chemistry C.

[12]  S. Bals,et al.  Interplay between Surface Chemistry, Precursor Reactivity, and Temperature Determines Outcome of ZnS Shelling Reactions on CuInS2 Nanocrystals , 2018, Chemistry of materials : a publication of the American Chemical Society.

[13]  D. Zahn,et al.  Luminescence and photoelectrochemical properties of size-selected aqueous copper-doped Ag–In–S quantum dots , 2018, RSC advances.

[14]  D. Zahn,et al.  Origin and Dynamics of Highly Efficient Broadband Photoluminescence of Aqueous Glutathione-Capped Size-Selected Ag–In–S Quantum Dots , 2018 .

[15]  Hee Chang Yoon,et al.  Origin of highly efficient photoluminescence in AgIn5S8 nanoparticles. , 2017, Nanoscale.

[16]  Martina Sandroni,et al.  Prospects of Chalcopyrite-Type Nanocrystals for Energy Applications , 2017 .

[17]  D. Zahn,et al.  A Fine Size Selection of Brightly Luminescent Water-Soluble Ag–In–S and Ag–In–S/ZnS Quantum Dots , 2017 .

[18]  G. Schatz,et al.  The photoluminescence spectral profiles of water-soluble aggregates of PbS quantum dots assembled through reversible metal coordination. , 2017, Chemical communications.

[19]  T. Torimoto,et al.  Influence of Zn on the photoluminescence of colloidal (AgIn)xZn2(1-x)S2 nanocrystals. , 2017, Physical chemistry chemical physics : PCCP.

[20]  A. Benayad,et al.  Method to determine radiative and non-radiative defects applied to AgInS2-ZnS luminescent nanocrystals. , 2017, Physical chemistry chemical physics : PCCP.

[21]  P. Moroz,et al.  Energy Transfer in Quantum Dot Solids , 2017 .

[22]  A. Nassiopoulou,et al.  Energy transfer in aggregated CuInS2/ZnS core-shell quantum dots deposited as solid films , 2017 .

[23]  O. Stroyuk,et al.  Brightly luminescent colloidal Ag–In–S nanoparticles stabilized in aqueous solutions by branched polyethyleneimine , 2016 .

[24]  Ken-Tye Yong,et al.  New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine. , 2016, Chemical reviews.

[25]  Patrick J. Whitham,et al.  Luminescent Colloidal Semiconductor Nanocrystals Containing Copper: Synthesis, Photophysics, and Applications. , 2016, Chemical reviews.

[26]  Tatsuya Kameyama,et al.  Controlling the Electronic Energy Structure of ZnS–AgInS2 Solid Solution Nanocrystals for Photoluminescence and Photocatalytic Hydrogen Evolution , 2015 .

[27]  Y. Masumoto,et al.  Photocarrier recombination dynamics in ternary chalcogenide CuInS2 quantum dots. , 2015, Physical chemistry chemical physics : PCCP.

[28]  Elizabeth M. Y. Lee,et al.  Determination of Exciton Diffusion Length by Transient Photoluminescence Quenching and Its Application to Quantum Dot Films , 2015 .

[29]  O. Stroyuk,et al.  Luminescent Ag-doped In2S3 nanoparticles stabilized by mercaptoacetate in water and glycerol , 2015, Journal of Nanoparticle Research.

[30]  D. N. Messias,et al.  Fluorescence resonance energy transfer measured by spatial photon migration in CdSe-ZnS quantum dots colloidal systems as a function of concentration , 2014 .

[31]  Y. Hamanaka,et al.  Enhancement of Donor–Acceptor Pair Emissions in Colloidal AgInS2 Quantum Dots with High Concentrations of Defects , 2014 .

[32]  W. Tisdale,et al.  Magnitude of the Förster Radius in Colloidal Quantum Dot Solids , 2014 .

[33]  Angshuman Nag,et al.  Luminescence and solar cell from ligand-free colloidal AgInS2 nanocrystals , 2014 .

[34]  Y. Hamanaka,et al.  Luminescence properties of chalcopyrite AgInS2 nanocrystals: Their origin and related electronic states , 2013 .

[35]  S. Evans,et al.  Determining the Concentration of CuInS2 Quantum Dots from the Size-Dependent Molar Extinction Coefficient , 2012 .

[36]  D. Nečas,et al.  Gwyddion: an open-source software for SPM data analysis , 2012 .

[37]  Y. Hamanaka,et al.  Photoluminescence Properties and Its Origin of AgInS2 Quantum Dots with Chalcopyrite Structure , 2011 .

[38]  Darcy J. Gentleman,et al.  Water soluble quantum dot nanoclusters: energy migration in artifical materials. , 2006, Physical chemistry chemical physics : PCCP.