Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth

Abstract. We have integrated the atmospheric chemistry and transport model TM5 into the global climate model EC-Earth version 2.4. We present an overview of the TM5 model and the two-way data exchange between TM5 and the IFS model from the European Centre for Medium-Range Weather Forecasts (ECMWF), the atmospheric general circulation model of EC-Earth. In this paper we evaluate the simulation of tropospheric chemistry and aerosols in a one-way coupled configuration. We have carried out a decadal simulation for present-day conditions and calculated chemical budgets and climatologies of tracer concentrations and aerosol optical depth. For comparison we have also performed offline simulations driven by meteorological fields from ECMWF's ERA-Interim reanalysis and output from the EC-Earth model itself. Compared to the offline simulations, the online-coupled system produces more efficient vertical mixing in the troposphere, which reflects an improvement of the treatment of cumulus convection. The chemistry in the EC-Earth simulations is affected by the fact that the current version of EC-Earth produces a cold bias with too dry air in large parts of the troposphere. Compared to the ERA-Interim driven simulation, the oxidizing capacity in EC-Earth is lower in the tropics and higher in the extratropics. The atmospheric lifetime of methane in EC-Earth is 9.4 years, which is 7% longer than the lifetime obtained with ERA-Interim but remains well within the range reported in the literature. We further evaluate the model by comparing the simulated climatologies of surface radon-222 and carbon monoxide, tropospheric and surface ozone, and aerosol optical depth against observational data. The work presented in this study is the first step in the development of EC-Earth into an Earth system model with fully interactive atmospheric chemistry and aerosols.

[1]  J. E. Williams,et al.  A modified band approach for the accurate calculation of online photolysis rates in stratospheric-tropospheric Chemical Transport Models , 2006 .

[2]  J. Seinfeld,et al.  Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1997 .

[3]  Philippe Ciais,et al.  Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations , 2010 .

[4]  M. Dameris,et al.  A vertically resolved, monthly mean, ozone database from 1979 to 2100 for constraining global climate model simulations , 2009 .

[5]  Wouter Peters,et al.  Stability of tropospheric hydroxyl chemistry , 2002 .

[6]  Wouter Peters,et al.  On the role of hydroxyl radicals in the self-cleansing capacity of the troposphere , 2004 .

[7]  P. V. Velthoven,et al.  Evaluation of archived and off-line diagnosed vertical diffusion coefficients from ERA-40 with 222 Rn simulations , 2004 .

[8]  G. Russell,et al.  A New Finite-Differencing Scheme for the Tracer Transport Equation , 1981 .

[9]  J. Lamarque,et al.  Multimodel ensemble simulations of present-day and near-future tropospheric ozone , 2006 .

[10]  A. Bouwman,et al.  A global high‐resolution emission inventory for ammonia , 1997 .

[11]  T. Holzer-Popp,et al.  Recommendations for reporting "black carbon" measurements , 2013 .

[12]  Studies on non-precipitating cumulus cloud acidification , 1989 .

[13]  J. Edmonds,et al.  RCP4.5: a pathway for stabilization of radiative forcing by 2100 , 2011 .

[14]  J. Lelieveld,et al.  Dry deposition parameterization in a chemistry general circulation model and its influence on the distribution of reactive trace gases. , 1995 .

[15]  Edward C. Monahan,et al.  Optimal Power-Law Description of Oceanic Whitecap Coverage Dependence on Wind Speed , 1980 .

[16]  Johannes W. Kaiser,et al.  Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System : Forward modeling , 2009 .

[17]  Bin Wang,et al.  Evaluation of the atmospheric transport in a GCM using radon measurements: sensitivity to cumulus convection parameterization , 2008 .

[18]  J. Flemming,et al.  Modeling global impacts of heterogeneous loss of HO 2 on cloud droplets, ice particles and aerosols , 2014 .

[19]  Corinne Le Quéré,et al.  Carbon and Other Biogeochemical Cycles , 2014 .

[20]  T. Shepherd,et al.  The Impact of Stratospheric Ozone Recovery on the Southern Hemisphere Westerly Jet , 2008, Science.

[21]  Maarten S. Krol,et al.  On the Computation of Mass Fluxes for Eulerian Transport Models from Spectral Meteorological Fields , 2002, International Conference on Computational Science.

[22]  Henk Eskes,et al.  Multi sensor reanalysis of total ozone , 2010 .

[23]  A. Segers,et al.  On the use of mass-conserving wind fields in chemistry-transport models , 2002 .

[24]  A. Jeuken,et al.  Simulation of the transport of Rn222 using on‐line and off‐line global models at different horizontal resolutions: a detailed comparison with measurements, , 1999 .

[25]  M. Wesely Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models , 1989 .

[26]  J. Lamarque,et al.  Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) , 2012 .

[27]  Sander Houweling,et al.  The impact of nonmethane hydrocarbon compounds on tropospheric photochemistry , 1998 .

[28]  Paul J. Crutzen,et al.  Reaction of N2O5 on tropospheric aerosols: Impact on the global distributions of NO x , O3, and OH , 1993 .

[29]  Albert A. M. Holtslag,et al.  Local Versus Nonlocal Boundary-Layer Diffusion in a Global Climate Model , 1993 .

[30]  M. Uematsu,et al.  Seasonal variability of radon-derived fetch regions for Sado Island, Japan, based on 3 years of observations: 2002-2004 , 2009 .

[31]  M. Uematsu,et al.  Estimating the Asian radon flux density and its latitudinal gradient in winter using ground-based radon observations at Sado Island , 2009 .

[32]  D. Jacob,et al.  Climate response to the increase in tropospheric ozone since preindustrial times: A comparison between ozone and equivalent CO2 forcings , 2004 .

[33]  Michael B. McElroy,et al.  Three-dimensional climatological distribution of tropospheric OH: Update and evaluation , 2000 .

[34]  Nadine Unger,et al.  Improved Attribution of Climate Forcing to Emissions , 2009, Science.

[35]  A. Segers,et al.  Time series of the stratosphere-troposphere exchange of ozone simulated with reanalyzed and operational forecast data , 2006 .

[36]  M. Krol,et al.  Implications of variations in photodissociation rates for global tropospheric chemistry , 1997 .

[37]  Axel Lauer,et al.  The effect of harmonized emissions on aerosol properties in global models – an AeroCom experiment , 2007 .

[38]  Tami C. Bond,et al.  Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom , 2006 .

[39]  B. Soden,et al.  Robust Responses of the Hydrological Cycle to Global Warming , 2006 .

[40]  M. Chin,et al.  Radiative forcing in the ACCMIP historical and future climate simulations , 2013 .

[41]  M. Dameris,et al.  Numerical Modeling of Climate-Chemistry Connections: Recent Developments and Future Challenges , 2013, ATMOS 2013.

[42]  M. Tiedtke A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models , 1989 .

[43]  Nathan P. Gillett,et al.  Simulation of Recent Southern Hemisphere Climate Change , 2003, Science.

[44]  C. Huntingford,et al.  Indirect radiative forcing of climate change through ozone effects on the land-carbon sink , 2007, Nature.

[45]  M. Prather Numerical advection by conservation of second-order moments. [for trace element spatial distribution and chemical interaction in atmosphere] , 1986 .

[46]  W. C. Graustein,et al.  Transport and residence times of tropospheric aerosols inferred from a global three-dimensional simulation of 210Pb , 1993 .

[47]  Martin Köhler,et al.  Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time‐scales , 2008 .

[48]  Paul J. Crutzen,et al.  An efficient method for online calculations of photolysis and heating rates , 1998 .

[49]  Gabriele Curci,et al.  The AeroCom evaluation and intercomparison of organic aerosol in global models , 2014, Atmospheric Chemistry and Physics.

[50]  John M. Reilly,et al.  Future Effects of Ozone on Carbon Sequestration and Climate Change Policy Using a Global Biogeochemical Model , 2005 .

[51]  A. Provenzale,et al.  Aerosol optical depth over the Arctic: a comparison of ECHAM-HAM and TM5 with ground-based, satellite and reanalysis data , 2012 .

[52]  R. Ruedy,et al.  Role of tropospheric ozone increases in 20th‐century climate change , 2006 .

[53]  J. Louis A parametric model of vertical eddy fluxes in the atmosphere , 1979 .

[54]  B. Hurk,et al.  Contribution of Dynamic Vegetation Phenology to Decadal Climate Predictability , 2014 .

[55]  H. Levy,et al.  Empirical model of global soil‐biogenic NOχ emissions , 1995 .

[56]  Nadine Unger,et al.  Simulations of preindustrial, present-day, and 2100 conditions in the NASA GISS composition and climate model G-PUCCINI , 2006 .

[57]  P. J. Rasch,et al.  A comparison of scavenging and deposition processes in global models: results from the WCRP Cambridge Workshop of 1995 , 2000 .

[58]  M. Jacobson Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols , 2001 .

[59]  O. Wild,et al.  Diagnosing the stratosphere-to-troposphere flux of ozone in a chemistry transport model , 2005 .

[60]  S. Valcke,et al.  The OASIS3 coupler: a European climate modelling community software , 2012 .

[61]  Eric J. Fetzer,et al.  Evaluating CMIP5 models using AIRS tropospheric air temperature and specific humidity climatology , 2013 .

[62]  Oliver Wild,et al.  Global tropospheric ozone modeling: Quantifying errors due to grid resolution , 2006 .

[63]  Martin Dameris,et al.  Technical Note: A new global database of trace gases and aerosols from multiple sources of high vertical resolution measurements , 2008 .

[64]  B. Hannegan,et al.  Stratospheric ozone in 3-D models : A simple chemistry and the cross-tropopause flux , 2000 .

[65]  W. Collins,et al.  An AeroCom Initial Assessment - Optical Properties in Aerosol Component Modules of Global Models , 2005 .

[66]  P. Thunis,et al.  The sensitivity of aerosol in Europe to two different emission inventories and temporal distribution of emissions , 2006 .

[67]  Mikhail Sofiev,et al.  The European aerosol budget in 2006 , 2010 .

[68]  A. Arneth,et al.  Terrestrial biogeochemical feedbacks in the climate system , 2010 .

[69]  P. J. Rasch,et al.  CAM-chem: description and evaluation of interactive atmospheric chemistry in CESM , 2011 .

[70]  J. Veefkind,et al.  Simulation of the aerosol optical depth over Europe for August 1997 and a comparison with observations , 2001 .

[71]  J. Lelieveld,et al.  What controls tropospheric ozone , 2000 .

[72]  Daniel J. Jacob,et al.  Global inventory of sulfur emissions with 1°×1° resolution , 1992 .

[73]  S. Taguchi,et al.  Evaluation of the atmospheric transport model NIRE-CTM-96 by using measured radon-222 concentrations , 2002 .

[74]  Michael J. Prather,et al.  Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry , 2012 .

[75]  Jorg M. Hacker,et al.  The Vertical Distribution of Radon in Clear and Cloudy Daytime Terrestrial Boundary Layers , 2011 .

[76]  Matthias Karl,et al.  Sources of uncertainties in modelling black carbon at the global scale , 2009 .

[77]  R. Andres,et al.  A time‐averaged inventory of subaerial volcanic sulfur emissions , 1998 .

[78]  M. Chin,et al.  Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations , 2012 .

[79]  Johann Feichter,et al.  Simulation of the tropospheric sulfur cycle in a global climate model , 1996 .

[80]  Jos Lelieveld,et al.  Distribution and budget of O3 in the troposphere calculated with a chemistry general circulation model. , 1995 .

[81]  Béatrice Josse,et al.  Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation of historical and projected future changes , 2013 .

[82]  J. Lamarque,et al.  Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) , 2012 .

[83]  Harald Flentje,et al.  Coupling global chemistry transport models to ECMWF’s integrated forecast system , 2009 .

[84]  A. Sterl,et al.  EC-Earth A Seamless earth-System Prediction Approach in Action , 2010 .

[85]  Peter Bergamaschi,et al.  The global chemistry transport model TM5: description and evaluation of the tropospheric chemistry version 3.0 , 2010 .

[86]  A. Thomson,et al.  The representative concentration pathways: an overview , 2011 .

[87]  Richard G. Derwent,et al.  Multimodel simulations of carbon monoxide: Comparison with observations and projected near‐future changes , 2006 .

[88]  W. Slinn,et al.  Predictions for particle deposition on natural waters , 1980 .

[89]  L. Polvani,et al.  Stratospheric Ozone Depletion: The Main Driver of Twentieth-Century Atmospheric Circulation Changes in the Southern Hemisphere , 2011 .

[90]  A. Holtslag,et al.  Evaluation and model impacts of alternative boundary-layer height formulations , 1996 .

[91]  R. J. Engelmann Statistical aspects of the washout of polydisperse aerosols , 1976 .

[92]  L. Martin,et al.  Aqueous oxidation of sulfur dioxide by hydrogen peroxide at low pH , 1981 .

[93]  J. Lamarque,et al.  Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) , 2012 .

[94]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[95]  L. Emmons,et al.  The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions , 2012 .

[96]  Jos Lelieveld,et al.  Gas/aerosol partitioning: 1. A computationally efficient model , 2002 .

[97]  Howard G. Maahs,et al.  Kinetics and mechanism of the oxidation of S(IV) by ozone in aqueous solution with particular reference to SO2 conversion in nonurban tropospheric clouds , 1983 .

[98]  A. Beljaars,et al.  Comparison between archived and off‐line diagnosed convective mass fluxes in the chemistry transport model TM3 , 2004 .

[99]  Axel Lauer,et al.  © Author(s) 2006. This work is licensed under a Creative Commons License. Atmospheric Chemistry and Physics Analysis and quantification of the diversities of aerosol life cycles , 2022 .

[100]  S. Gong,et al.  A parameterization of sea‐salt aerosol source function for sub‐ and super‐micron particles , 2003 .

[101]  J. Lamarque,et al.  The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): overview and description of models, simulations and climate diagnostics , 2012 .

[102]  Yang Zhang,et al.  Online-coupled meteorology and chemistry models: history, current status, and outlook , 2008 .

[103]  Markus Quante,et al.  SMOKE for Europe - adaptation, modification and evaluation of a comprehensive emission model for Europe , 2010 .

[104]  M. Schoeberl,et al.  Stratosphere‐troposphere exchange of mass and ozone , 2004 .

[105]  C. Scannell,et al.  Global scale emission and distribution of sea-spray aerosol: Sea-salt and organic enrichment , 2010 .

[106]  H. Levy Normal Atmosphere: Large Radical and Formaldehyde Concentrations Predicted , 1971, Science.

[107]  M. Ramonet,et al.  Radon activity in the lower troposphere and its impact on ionization rate: A global estimate using different radon emissions , 2011 .

[108]  William J. Collins,et al.  Multimodel estimates of intercontinental source-receptor relationships for ozone pollution , 2008 .

[109]  Jagoda Crawford,et al.  Identifying tropospheric baseline air masses at Mauna Loa Observatory between 2004 and 2010 using Radon‐222 and back trajectories , 2013 .

[110]  Martin Köhler,et al.  The ECMWF model climate: recent progress through improved physical parametrizations , 2010 .

[111]  B. DeAngelo,et al.  Bounding the role of black carbon in the climate system: A scientific assessment , 2013 .

[112]  Klaus Wyser,et al.  EC-Earth V2.2: description and validation of a new seamless earth system prediction model , 2012, Climate Dynamics.

[113]  Steven Pawson,et al.  Impact of stratospheric ozone hole recovery on Antarctic climate , 2008 .

[114]  N. Gillett,et al.  Drivers of past and future Southern Ocean change: Stratospheric ozone versus greenhouse gas impacts , 2011 .

[115]  Peter Bergamaschi,et al.  European Geosciences Union Atmospheric Chemistry and Physics , 2005 .

[116]  H. Kelder,et al.  An ozone climatology based on ozonesonde and satellite measurements , 1998 .

[117]  O. Boucher,et al.  Aerosol forcing in the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2‐ES and the role of ammonium nitrate , 2011 .

[118]  M. Heimann,et al.  Impact of vegetation and preferential source areas on global dust aerosol: Results from a model study , 2002 .

[119]  Veronika Eyring,et al.  Evaluation of Climate Models. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change , 2013 .

[120]  M. Razinger,et al.  Aerosol analysis and forecast in the European Centre for Medium‐Range Weather Forecasts Integrated Forecast System: 2. Data assimilation , 2009 .

[121]  J. Wilson,et al.  M7: An efficient size‐resolved aerosol microphysics module for large‐scale aerosol transport models , 2004 .

[122]  François Dulac,et al.  Wet deposition in a global size-dependent aerosol transport model: 1. Comparison of a 1 year 210Pb simulation with ground measurements , 1998 .

[123]  D. Schimel,et al.  Atmospheric Chemistry and Greenhouse Gases , 1999 .

[124]  Daniel Cariolle,et al.  A revised linear ozone photochemistry parameterization for use in transport and general circulation models: multi-annual simulations , 2007 .

[125]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[126]  Johannes Quaas,et al.  Estimates of aerosol radiative forcing from the MACC re-analysis , 2012 .

[127]  P. V. Velthoven,et al.  Implications of the enhanced Brewer-Dobson circulation in European Centre for Medium-Range Weather Forecasts reanalysis ERA-40 for the stratosphere-troposphere exchange of ozone in global chemistry transport models , 2004 .

[128]  A. Strunk,et al.  The application of the Modified Band Approach for the calculation of on-line photodissociation rate constants in TM5: implications for oxidative capacity , 2011 .

[129]  W. Slinn Dry deposition and resuspension of aerosol particles - a new look at some old problems , 1976 .

[130]  E. Dlugokencky,et al.  Toward regional‐scale modeling using the two‐way nested global model TM5: Characterization of transport using SF6 , 2004 .

[131]  M. C. Dodge,et al.  A photochemical kinetics mechanism for urban and regional scale computer modeling , 1989 .

[132]  J. Sheng,et al.  Modeling the stratospheric warming following the Mt. Pinatubo eruption: uncertainties in aerosol extinctions , 2013 .

[133]  A. Henderson‐sellers,et al.  Ground based radon-222 observations and their application to atmospheric studies. , 2004, Journal of environmental radioactivity.

[134]  L. Bopp,et al.  Stratospheric ozone depletion reduces ocean carbon uptake and enhances ocean acidification , 2009 .

[135]  A. Henderson‐sellers,et al.  Radon-222 in boundary layer and free tropospheric continental outflow events at three ACE-Asia sites , 2005 .

[136]  D. Shindell,et al.  Anthropogenic and Natural Radiative Forcing , 2014 .

[137]  J. Lelieveld,et al.  A dry deposition parameterization for sulfur oxides in a chemistry and general circulation model , 1998 .

[138]  David S. Lee,et al.  Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application , 2010 .

[139]  Veronika Eyring,et al.  Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing , 2011 .

[140]  G. Meehl,et al.  Contributions of external forcings to Southern Annular Mode trends , 2006 .

[141]  Benjamin Smith,et al.  Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space , 2008 .

[142]  M. Gauß,et al.  The EMEP MSC-W chemical transport model -- technical description , 2012 .