Analysis of future generation solar cells and materials

The efficiency potentials of future generation solar cells such as wide bandgap chalcopyrite, Cu2ZnSnS4 (CZTS), Cu2ZnSn(S,Se)4 (CZTSSe), multi quantum well (MQW) and quantum dot (QD) solar cells are discussed on the basis of external radiative efficiency (ERE), open-circuit voltage loss, fill factor loss, and nonradiative recombination losses. CZTS and CZTSSe solar cells have efficiency potentials of more than 20% owing to the improvement in ERE from about 0.001 to 1%. MQW and QD cells have efficiency potentials of 24.8%, and 25.8% owing to the improvement in ERE from around 0.01 to 0.1%, and 1%, respectively. In this paper, the effects of nonradiative recombination on the properties of future generation solar cells are discussed.

[1]  Martin A. Green,et al.  Solar cell efficiency tables (version 37) , 2011 .

[2]  Tadashi Ito,et al.  Enhanced Conversion Efficiencies of Cu2ZnSnS4-Based Thin Film Solar Cells by Using Preferential Etching Technique , 2008 .

[3]  Takuya Kato,et al.  New world record Cu(In, Ga)(Se, S)2 thin film solar cell efficiency beyond 22% , 2016, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC).

[4]  Brian E. McCandless,et al.  Device and material characterization of Cu(InGa)Se2 solar cells with increasing band gap , 1996 .

[5]  Nikolai N. Ledentsov,et al.  AlGaAs/GaAs photovoltaic cells with an array of InGaAs QDs , 2009 .

[6]  Y. Nakano,et al.  A Superlattice Solar Cell With Enhanced Short-Circuit Current and Minimized Drop in Open-Circuit Voltage , 2011, IEEE Journal of Photovoltaics.

[7]  Wei Wang,et al.  Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency , 2014 .

[8]  Martin A. Green,et al.  Radiative efficiency of state‐of‐the‐art photovoltaic cells , 2012 .

[9]  Isik C. Kizilyalli,et al.  27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[10]  Uwe Rau,et al.  Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells , 2007 .

[11]  R. Raffaelle,et al.  Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells , 2011 .

[12]  K. Kim,et al.  Improvement of minority carrier lifetime and conversion efficiency by Na incorporation in Cu2ZnSnSe4 solar cells , 2017 .

[13]  Thomas Kirchartz,et al.  Quantifying Losses in Open-Circuit Voltage in Solution-Processable Solar Cells , 2015 .

[14]  Antonio Luque,et al.  Handbook of photovoltaic science and engineering , 2011 .

[15]  H. Sugimoto,et al.  Lifetime improvement for high efficiency Cu2ZnSnS4 submodules , 2013, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC).

[16]  P. Fons,et al.  Structural tuning of wide‐gap chalcopyrite CuGaSe2 thin films and highly efficient solar cells: differences from narrow‐gap Cu(In,Ga)Se2 , 2014 .

[17]  Kenji Araki,et al.  Efficiency potential and recent activities of high-efficiency solar cells , 2017 .

[18]  Yoshitaka Okada,et al.  Characteristics of InAs/GaNAs strain-compensated quantum dot solar cell , 2009 .

[19]  A. Luque,et al.  Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels , 1997 .

[20]  Martin A. Green,et al.  Solar cell efficiency tables (version 48) , 2016 .

[21]  H. Sugimoto,et al.  New World-Record Efficiency for Pure-Sulfide Cu(In,Ga)S2 Thin-Film Solar Cell With Cd-Free Buffer Layer via KCN-Free Process , 2016, IEEE Journal of Photovoltaics.

[22]  Myles A. Steiner,et al.  Enhanced external radiative efficiency for 20.8 efficient single-junction GaInP solar cells , 2013 .

[23]  W. Warta,et al.  Solar cell efficiency tables (version 36) , 2010 .

[24]  M. Taguchi,et al.  24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer , 2013, IEEE Journal of Photovoltaics.

[25]  Tomah Sogabe,et al.  Intermediate band solar cells: Recent progress and future directions , 2015 .

[26]  Diana L. Huffaker,et al.  Improved device performance of InAs∕GaAs quantum dot solar cells with GaP strain compensation layers , 2007 .

[27]  Keith W. J. Barnham,et al.  A new approach to high‐efficiency multi‐band‐gap solar cells , 1990 .

[28]  David Cahen,et al.  Updated Assessment of Possibilities and Limits for Solar Cells , 2014, Advanced materials.

[29]  Kosuke Kurokawa,et al.  Particularity of PV aggregations incorporating with the power grids - Development of a power router - , 2009, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).

[30]  H. Sugimoto,et al.  Impact of buffer layer on kesterite solar cells , 2015, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC).

[31]  M. Yamaguchi Fundamentals and R&D status of III‐V compound solar cells and materials , 2015 .

[32]  Naoteru Matsubara,et al.  Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell , 2014, IEEE Journal of Photovoltaics.

[33]  A. Zunger,et al.  Defect physics of the CuInSe 2 chalcopyrite semiconductor , 1998 .

[34]  K. Yoshikawa,et al.  Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26% , 2017, Nature Energy.

[35]  C. Nuese III-V alloys for optoelectronic applications , 1977 .

[36]  W. Metzger,et al.  The roles of carrier concentration and interface, bulk, and grain-boundary recombination for 25% efficient CdTe solar cells , 2017 .

[37]  C. D. Farmer,et al.  Emitter degradation in quantum dot intermediate band solar cells , 2007 .

[38]  W. Warta,et al.  Solar cell efficiency tables (version 49) , 2017 .

[39]  M. Green,et al.  19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells , 1998 .