Wide-bandwidth , meandering vibration energy harvester with distributed circuit board inertial mass

A wide-bandwidth, meandering piezoelectric vibration energy harvester is presented for the first time utilizing the sensor node electronics as a distributed inertial mass. The energy harvester achieves an experimental maximum power output of 198 W when excited with a peak acceleration of 0.2 g (where 1 g is 9.8 m/s2) at 35 Hz. The output power remains higher than half of the maximum power (99 W) for the frequency band from 34.4 to 42 Hz, achieving a half-power fractional bandwidth of 19.9%, an increase of 4× compared to typical single-mode energy harvesters. The output power remains above 20 W from 29.5 to 48 Hz, achieving a 20W fractional bandwidth of 48%. This is the highest reported fractional bandwidth for this low 0.2 g acceleration level. The distributed inertial mass in combination with the meandering harvester’s close natural frequency spacing is what enables the wide bandwidth. The energy harvester is demonstrated to autonomously operate a sensor node to sense and transmit temperature through a 434 MHz on–off-keying wireless transmitter while the electronics are used as the inertial distributed mass. © 2012 Elsevier B.V. All rights reserved.

[1]  Meiling Zhu,et al.  Analyses of power output of piezoelectric energy-harvesting devices directly connected to a load resistor using a coupled piezoelectric-circuit finite element method , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[2]  Guifu Ding,et al.  A MICRO ELECTROMAGNETIC VIBRATION ENERGY HARVESTER WITH SANDWICHED STRUCTURE AND AIR CHANNEL FOR HIGH ENERGY CONVERSION EFFICIENCY , 2009 .

[3]  Peter Glynne-Jones,et al.  An investigation of self-powered systems for condition monitoring applications☆ , 2004 .

[4]  Swee Leong Kok,et al.  Free-standing thick-film piezoelectric multimorph cantilevers for energy harvesting , 2009, 2009 IEEE International Ultrasonics Symposium.

[5]  Wei-Hsin Liao,et al.  Sensitivity Analysis and Energy Harvesting for a Self-Powered Piezoelectric Sensor , 2005 .

[6]  Dibin Zhu,et al.  Autonomous Tunable Energy Harvester , 2009 .

[7]  Philip H. W. Leong,et al.  A Laser-micromachined Multi-modal Resonating Power Transducer for Wireless Sensing Systems , 2001 .

[8]  Wen J. Li,et al.  Development of an AA size energy transducer with micro resonators , 2003, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03..

[9]  P. Pillay,et al.  Self-Powered Sensors for Monitoring of Highway Bridges , 2009, IEEE Sensors Journal.

[10]  S. Priya Advances in energy harvesting using low profile piezoelectric transducers , 2007 .

[11]  Tuna Balkan,et al.  An electromagnetic micro power generator for wideband environmental vibrations , 2008 .

[12]  E. Koukharenko,et al.  Macro and Micro Scale Electromagnetic Kinetic Energy Harvesting Generators , 2006, ArXiv.

[13]  Neil M. White,et al.  Design and fabrication of a new vibration-based electromechanical power generator , 2001 .

[14]  Shadrach Roundy,et al.  On the Effectiveness of Vibration-based Energy Harvesting , 2005 .

[15]  D. Leo,et al.  Laser-machined piezoelectric cantilevers for mechanical energy harvesting , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[16]  Kazuhiko Adachi,et al.  An Experimental Power Generation Evaluation of Cantilever Type of Piezoelectric Vibration Energy Harvester , 2009 .

[17]  Gordon M. H. Chan,et al.  A Micromachined Vibration-Induced Power Generator For Low Power Sensors Of Robotic Systems , 2000 .

[18]  Gordon M. H. Chan,et al.  PCB INTEGRATED MICRO-GENERATOR FOR WIRELESS SYSTEMS , 2000 .

[19]  Saibal Roy,et al.  A micro electromagnetic generator for vibration energy harvesting , 2007 .

[20]  Julien Penders,et al.  Energy Harvesting for Autonomous Wireless Sensor Networks , 2010, IEEE Solid-State Circuits Magazine.

[21]  Neil N. H. Ching,et al.  A Laser-micromachined Vibrational to Electrical Power Transducer for Wireless Sensing Systems , 2001 .

[22]  Daniel J. Inman,et al.  Effect of Strain Nodes and Electrode Configuration on Piezoelectric Energy Harvesting From Cantilevered Beams , 2009 .

[23]  Gordon M. H. Chan,et al.  Infrared signal transmission by a laser-micromachined, vibration-induced power generator , 2000, Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144).

[24]  L. E. Cross,et al.  Constitutive equations of symmetrical triple layer piezoelectric benders , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[25]  Daniel J. Inman,et al.  Analytical Modeling and Experimental Verification of the Vibrations of the Zigzag Microstructure for Energy Harvesting , 2011 .

[26]  T. Galchev,et al.  Micro Power Generator for Harvesting Low-Frequency and Nonperiodic Vibrations , 2011, Journal of Microelectromechanical Systems.

[27]  Yang Zhang,et al.  Toward self-tuning adaptive vibration-based microgenerators , 2005, SPIE Micro + Nano Materials, Devices, and Applications.

[28]  S. Beeby,et al.  A novel thick-film piezoelectric micro-generator , 2001 .

[29]  Lei Wang,et al.  Vibration energy harvesting by magnetostrictive material , 2008 .

[30]  Steve Beeby,et al.  A credit card sized self powered smart sensor node , 2011 .

[31]  Skandar Basrour,et al.  Integrated power harvesting system including a MEMS generator and a power management circuit , 2008 .

[32]  Daniel J. Inman,et al.  Energy Harvesting Technologies , 2008 .

[33]  D. Peroulis,et al.  Increased-bandwidth, meandering vibration energy harvester , 2011, 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference.

[34]  D. Inman,et al.  A Review of Power Harvesting from Vibration using Piezoelectric Materials , 2004 .

[35]  Daniel J. Inman,et al.  An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations , 2009 .

[36]  Marco Ferrari,et al.  An autonomous battery-less sensor module powered by piezoelectric energy harvesting with RF transmission of multiple measurement signals , 2009 .

[37]  S. Beeby,et al.  Strategies for increasing the operating frequency range of vibration energy harvesters: a review , 2010 .

[38]  Paul K. Wright,et al.  A STUDY OF AMBIENT VIBRATIONS FOR PIEZOELECTRIC ENERGY CONVERSION , 2009 .

[39]  Kee S. Moon,et al.  Single crystal piezoelectric transducers to harvest vibration energy , 2005, International Symposium on Optomechatronic Technologies.

[40]  Patrick J. Smith,et al.  AN EFFICIENT LOW COST ELECTROMAGNETIC VIBRATION HARVESTER , 2009 .

[41]  P. Woias,et al.  Bidirectional frequency tuning of a piezoelectric energy converter based on a cantilever beam , 2009 .

[42]  J. Y. Park,et al.  High performance piezoelectric MEMS energy harvester based on D33 mode of PZT thin film on buffer-layer with PBTIO3 inter-layer , 2009, TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference.

[43]  R. Huang,et al.  A silicon mems micro power generator for wearable micro devices , 2007 .

[44]  M. G. Prasad,et al.  A vibration energy harvesting device with bidirectional resonance frequency tunability , 2008 .

[45]  Fu-Shang Wei,et al.  Multichannel coherence analysis of helicopter vibrations , 2002, 6th International Conference on Signal Processing, 2002..

[46]  Byunghoo Jung,et al.  COMPACT LOW FREQUENCY MEANDERED PIEZOELECTRIC ENERGY HARVESTER , 2009 .

[47]  Lu Dong,et al.  Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting , 2006, Microelectron. J..

[48]  S. Roundy Energy Scavenging for Wireless Sensor Nodes with a Focus on Vibration-to-Electricity Conversion , 2003 .

[49]  Daniel Guyomar,et al.  Energy Harvester of 1.5 cm3 Giving Output Power of 2.6 mW with Only 1 G Acceleration , 2011 .

[50]  R. Ghodssi,et al.  Development of a simplified hybrid ambient low frequency, low intensity vibration energy scavenger system , 2009, TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference.

[51]  Neil D. Sims,et al.  Energy harvesting from the nonlinear oscillations of magnetic levitation , 2009 .

[52]  Shashank Priya,et al.  Design and fabrication of bimorph transducer for optimal vibration energy harvesting , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[53]  Saibal Roy,et al.  Self-powered autonomous wireless sensor node using vibration energy harvesting , 2008 .

[54]  Neil M. White,et al.  An electromagnetic, vibration-powered generator for intelligent sensor systems , 2004 .

[55]  K. Najafi,et al.  Thinned-PZT on SOI process and design optimization for piezoelectric inertial energy harvesting , 2011, 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference.

[56]  Y. V. Andel,et al.  Vibration energy harvesting with aluminum nitride-based piezoelectric devices , 2009 .

[57]  David L. Churchill,et al.  Power management for energy harvesting wireless sensors , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.