A Reduced-Order Kalman Filter for Data Assimilation in Physical Oceanography

A central task of physical oceanography is the prediction of ocean circulation at various time scales. Mathematical techniques are used in this domain not only for the modeling of ocean circulation but also for the enhancement of simulation through data assimilation. The ocean circulation model of concern here, namely, HYCOM, is briefly presented through its variables, equations, and specific vertical coordinate system. The main part of this paper focuses on the Kalman filter as a data assimilation method, and especially on how this mathematical technique, usually associated with a prohibitively high computing cost for operational sciences, is simplified in order to make it applicable to the simulation of realistic ocean circulation models. Some practical issues are presented, such as a brief explanation about ocean observation systems, together with examples of data assimilation results.

[1]  Jacques Verron,et al.  A singular evolutive extended Kalman filter for data assimilation in oceanography , 1998 .

[2]  Michael Ghil,et al.  An efficient algorithm for estimating noise covariances in distributed systems , 1985 .

[3]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[4]  D. Dee Simplification of the Kalman filter for meteorological data assimilation , 1991 .

[5]  H. Hasumi,et al.  Developments in ocean climate modelling , 2000 .

[6]  Eric P. Chassignet,et al.  Ocean modeling and parameterization , 1998 .

[7]  D. Dee On-line Estimation of Error Covariance Parameters for Atmospheric Data Assimilation , 1995 .

[8]  Ionel M. Navon,et al.  A reduced‐order approach to four‐dimensional variational data assimilation using proper orthogonal decomposition , 2007 .

[9]  R. Huang,et al.  Real Freshwater Flux as a Natural Boundary Condition for the Salinity Balance and Thermohaline Circulation Forced by Evaporation and Precipitation , 1993 .

[10]  Jean-Michel Brankart,et al.  Assimilation of sea-surface temperature and altimetric observations during 1992–1993 into an eddy permitting primitive equation model of the North Atlantic Ocean , 2003 .

[11]  M. Ghil Data assimilation in meteorology and oceanography : theory and practice : a collection of papers presented at the WMO Second International Symposium on Assimilation of Observations in Meteorology and Oceanography, 13-17 March 1995, Tokyo, Japan , 1997 .

[12]  M. Verlaan,et al.  Tidal flow forecasting using reduced rank square root filters , 1997 .

[13]  P. Houtekamer,et al.  Data Assimilation Using an Ensemble Kalman Filter Technique , 1998 .

[14]  Ichiro Fukumori,et al.  Assimilation of TOPEX sea level measurements with a reduced‐gravity, shallow water model of the tropical Pacific Ocean , 1995 .

[15]  Jean-Michel Brankart,et al.  Incremental Analysis Update Implementation into a Sequential Ocean Data Assimilation System , 2006 .

[16]  S. Cohn,et al.  An Introduction to Estimation Theory , 1997 .

[17]  R. Todling,et al.  Suboptimal Schemes for Atmospheric Data Assimilation Based on the Kalman Filter , 1994 .

[18]  Lawrence L. Takacs,et al.  Data Assimilation Using Incremental Analysis Updates , 1996 .

[19]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice Using MATLAB , 2001 .

[20]  Jean-Michel Brankart,et al.  Implementation of a multivariate data assimilation scheme for isopycnic coordinate ocean models: Application to a 1993–1996 hindcast of the North Atlantic Ocean circulation , 2003 .

[21]  P. Ioannou,et al.  State Estimation Using a Reduced-Order Kalman Filter , 2001 .

[22]  A. Robinson,et al.  Data Assimilation via Error Subspace Statistical Estimation.Part I: Theory and Schemes , 1999, Monthly Weather Review.

[23]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[24]  Ricardo Todling,et al.  Approximate Kalman Filters for Unstable Dynamics , 1995 .

[25]  G. Seber Multivariate observations / G.A.F. Seber , 1983 .

[26]  Jens Schröter,et al.  Data assimilation for marine monitoring and prediction: The MERCATOR operational assimilation systems and the MERSEA developments , 2005 .

[27]  M. Ghil,et al.  Data assimilation in meteorology and oceanography , 1991 .

[28]  Thierry Penduff,et al.  A four-year eddy-permitting assimilation of sea-surface temperature and altimetric data in the South Atlantic Ocean , 2002 .

[29]  Rainer Bleck,et al.  An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates , 2002 .

[30]  Pierre Bahurel,et al.  Mercator Ocean Global to Regional Ocean Monitoring and Forecasting , 2006 .

[31]  Pierre FJ Lermusiaux Data Assimilation via Error Subspace Statistical Estimation. , 1999 .

[32]  Stephen E. Cohn,et al.  A Kalman filter for a two-dimensional shallow-water model, formulation and preliminary experiments , 1985 .

[33]  Alexey Kaplan,et al.  Mapping tropical Pacific sea level : Data assimilation via a reduced state space Kalman filter , 1996 .

[34]  R. Daley Atmospheric Data Analysis , 1991 .

[35]  Pierre Brasseur,et al.  Assimilation of altimetric data in the mid-latitude oceans using the Singular Evolutive Extended Kalman filter with an eddy-resolving, primitive equation model , 1999 .

[36]  Eric P. Chassignet,et al.  North Atlantic Simulations with the Hybrid Coordinate Ocean Model (HYCOM): Impact of the Vertical Coordinate Choice, Reference Pressure, and Thermobaricity , 2003 .

[37]  A. Lorenc A Global Three-Dimensional Multivariate Statistical Interpolation Scheme , 1981 .

[38]  Zhendong Luo,et al.  Reduced-Order Modeling of the Upper Tropical Pacific Ocean Model using Proper Orthogonal Decomposition , 2006, Comput. Math. Appl..