General Control Horizon Extension Method for Nonlinear Model Predictive Control

In the nonlinear model predictive control (NMPC) field, it is well-known that the multistep control approach is superior to the single-step approach when examining high-order nonlinear systems. In the multistep control approach, however, the online minimization of a 2-norm square objective function over a control horizon of length M always requires solving a set of complex polynomial equations, for which no definite solution exists so far. Moreover, the complex nature of the receding horizon optimization also causes additional problems to its closed-loop stability analysis. With these two serious challenges in mind, using a Volterra−Laguerre model-based NMPC for discussion, we propose a general technique to extend the control horizon with the assistance of Groebner basis, which transforms the set of complex polynomial equations to a much simpler form. We prove the closed-loop stability of the algorithm in the sense that the input and output series are both mean-square-bounded. Finally, the efficiency of t...

[1]  Pertti M. Mäkilä,et al.  Laguerre series approximation of infinite dimensional systems , 1990, Autom..

[2]  Francis J. Doyle,et al.  Identification and Control Using Volterra Models , 2001 .

[3]  G. Dumont,et al.  An optimum time scale for discrete Laguerre network , 1993, IEEE Trans. Autom. Control..

[4]  Guy A. Dumont,et al.  Non-linear adaptive control via Laguerre expansion of Volterra kernels , 1993 .

[5]  P. V. D. Hof,et al.  A generalized orthonormal basis for linear dynamical systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[6]  Francis J. Doyle,et al.  The identification of nonlinear models for process control using tailored “plant-friendly” input sequences , 2001 .

[7]  R.S. Parker Nonlinear model predictive control of a continuous bioreactor using approximate data-driven models , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[8]  Ricardo J. G. B. Campello,et al.  A note on the optimal expansion of Volterra models using Laguerre functions , 2006, Autom..

[9]  Zonghai Chen,et al.  Adaptive predictive control algorithm based on Laguerre Functional Model , 2006 .

[10]  G. Dumont,et al.  Deterministic adaptive control based on Laguerre series representation , 1988 .

[11]  N. Bose Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory , 1995 .

[12]  R.S. Parker,et al.  A model-based algorithm for blood glucose control in Type I diabetic patients , 1999, IEEE Transactions on Biomedical Engineering.

[13]  P. V. D. Hof,et al.  A generalized orthonormal basis for linear dynamical systems , 1995, IEEE Trans. Autom. Control..

[14]  Francis J. Doyle,et al.  Optimal control of a continuous bioreactor using an empirical nonlinear model , 2001 .

[15]  Wagner Caradori do Amaral,et al.  Constrained robust predictive controller for uncertain processes modeled by orthonormal series functions , 2000, Autom..

[16]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[17]  Ricardo J. G. B. Campello,et al.  Optimal expansions of discrete-time Volterra models using Laguerre functions , 2003, Autom..

[18]  Leon O. Chua,et al.  Fading memory and the problem of approximating nonlinear operators with volterra series , 1985 .

[19]  Bo Wahlberg,et al.  On approximation of stable linear dynamical systems using Laguerre and Kautz functions , 1996, Autom..

[20]  William R. Cluett,et al.  Optimal choice of time-scaling factor for linear system approximations using Laguerre models , 1994, IEEE Trans. Autom. Control..

[21]  Guy Albert Dumont,et al.  Laguerre-based adaptive control of pH in an industrial bleach plant extraction stage , 1990, Autom..

[22]  M. Schetzen The Volterra and Wiener Theories of Nonlinear Systems , 1980 .

[23]  Liuping Wang Discrete model predictive controller design using Laguerre functions , 2004 .

[24]  Larbi Radouane,et al.  Decentralized adaptive control of linear interconnected systems based on Laguerre series representation , 1999, Autom..

[25]  B. Wayne Bequette,et al.  Nonlinear model‐predictive control: Closed‐loop stability analysis , 1996 .

[26]  Dale E. Seborg,et al.  Nonlinear Process Control , 1996 .