All-Weather sub-50-cm Radar-Inertial Positioning

Deployment of automated ground vehicles beyond the confines of sunny and dry climes will require sub-lane-level positioning techniques based on radio waves rather than near-visible-light radiation. Like human sight, lidar and cameras perform poorly in low-visibility conditions. This paper develops and demonstrates a novel technique for robust sub-50-cm-accurate urban ground vehicle positioning based on all-weather sensors. The technique incorporates a computationally-efficient globally-optimal radar scan batch registration algorithm into a larger estimation pipeline that fuses data from commercially-available low-cost automotive radars, low-cost inertial sensors, vehicle motion constraints, and, when available, precise GNSS measurements. Performance is evaluated on an extensive and realistic urban data set. Comparison against ground truth shows that during 60 minutes of GNSS-denied driving in the urban center of Austin, TX, the technique maintains 95th-percentile errors below 50 cm in horizontal position and 0.5 degrees in heading.

[1]  Paul Newman,et al.  Radar-only ego-motion estimation in difficult settings via graph matching , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[2]  Fredrik Gustafsson,et al.  Radar SLAM using visual features , 2011, EURASIP J. Adv. Signal Process..

[3]  Todd E. Humphreys,et al.  Deep-Urban Unaided Precise Global Navigation Satellite System Vehicle Positioning , 2020, IEEE Intelligent Transportation Systems Magazine.

[4]  Juan D. Tardós,et al.  Visual-Inertial Monocular SLAM With Map Reuse , 2016, IEEE Robotics and Automation Letters.

[5]  Baba C. Vemuri,et al.  Robust Point Set Registration Using Gaussian Mixture Models , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[7]  Ingmar Posner,et al.  Under the Radar: Learning to Predict Robust Keypoints for Odometry Estimation and Metric Localisation in Radar , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[8]  Bahram Ravani,et al.  Evaluation of the University of Minnesota GPS Snowplow Driver Assistance Program , 2015 .

[9]  Shaojie Shen,et al.  VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator , 2017, IEEE Transactions on Robotics.

[10]  S. Kennedy,et al.  Architecture and System Performance of SPAN -NovAtel's GPS/INS Solution , 2006, 2006 IEEE/ION Position, Location, And Navigation Symposium.

[11]  Simo Särkkä,et al.  Bayesian Filtering and Smoothing , 2013, Institute of Mathematical Statistics textbooks.

[12]  Todd E. Humphreys,et al.  Accuracy Limits for Globally-Referenced Digital Mapping Using Standard GNSS , 2018, 2018 21st International Conference on Intelligent Transportation Systems (ITSC).

[13]  John Folkesson,et al.  Vehicle localization with low cost radar sensors , 2016, 2016 IEEE Intelligent Vehicles Symposium (IV).

[14]  Christoph Gustav Keller,et al.  Landmark based radar SLAM using graph optimization , 2016, 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC).

[15]  Andriy Myronenko,et al.  Point Set Registration: Coherent Point Drift , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  M. E. Cannon,et al.  Performance Comparison of Kinematic GPS Integrated with Different Tactical Level IMUs , 2005 .

[17]  Klaus C. J. Dietmayer,et al.  The Labeled Multi-Bernoulli SLAM Filter , 2015, IEEE Signal Processing Letters.

[18]  Klaus C. J. Dietmayer,et al.  A continuously learning feature-based map using a bernoulli filtering approach , 2017, 2017 Sensor Data Fusion: Trends, Solutions, Applications (SDF).

[19]  Joan Solà,et al.  Quaternion kinematics for the error-state Kalman filter , 2015, ArXiv.

[20]  Peter Willett,et al.  The Bin-Occupancy Filter and Its Connection to the PHD Filters , 2009, IEEE Transactions on Signal Processing.

[21]  Naser El-Sheimy,et al.  Navigation Engine Design for Automated Driving Using INS/GNSS/3D LiDAR-SLAM and Integrity Assessment , 2020, Remote. Sens..

[22]  Robert W. Heath,et al.  Millimeter-Wave Vehicular Communication to Support Massive Automotive Sensing , 2016, IEEE Communications Magazine.

[23]  Takeo Kanade,et al.  A Correlation-Based Approach to Robust Point Set Registration , 2004, ECCV.

[24]  O. Montenbruck,et al.  Springer Handbook of Global Navigation Satellite Systems , 2017 .

[25]  Karl Granström,et al.  Poisson Multi-Bernoulli Mapping Using Gibbs Sampling , 2017, IEEE Transactions on Signal Processing.

[26]  Paul Newman,et al.  Precise Ego-Motion Estimation with Millimeter-Wave Radar Under Diverse and Challenging Conditions , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[27]  Wolfram Burgard,et al.  Visual SLAM for Flying Vehicles , 2008, IEEE Transactions on Robotics.

[28]  J. Dickmann,et al.  Real-Time Radar SLAM , 2017 .

[29]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[30]  Pavel Krsek,et al.  The Trimmed Iterative Closest Point algorithm , 2002, Object recognition supported by user interaction for service robots.

[31]  Hermann Winner,et al.  Real-Time Pose Graph SLAM based on Radar , 2019, 2019 IEEE Intelligent Vehicles Symposium (IV).

[32]  Mark G. Petovello,et al.  Benefits of Using a Tactical-Grade IMU for High-Accuracy Positioning , 2004 .

[33]  Sen Wang,et al.  RadarSLAM: Radar based Large-Scale SLAM in All Weathers , 2020, 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[34]  Todd E. Humphreys,et al.  Automotive-Radar-Based 50-cm Urban Positioning , 2020, 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS).

[35]  Todd E. Humphreys,et al.  TEX-CUP: The University of Texas Challenge for Urban Positioning , 2020, 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS).

[36]  John L. Crassidis,et al.  Survey of nonlinear attitude estimation methods , 2007 .

[37]  Ming Liu,et al.  Tightly Coupled 3D Lidar Inertial Odometry and Mapping , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[38]  Oliver J. Woodman,et al.  An introduction to inertial navigation , 2007 .

[39]  Ingmar Posner,et al.  Masking by Moving: Learning Distraction-Free Radar Odometry from Pose Information , 2019, CoRL.

[40]  R. Mahler Multitarget Bayes filtering via first-order multitarget moments , 2003 .

[41]  Keisuke Yoneda,et al.  Vehicle Localization using 76GHz Omnidirectional Millimeter-Wave Radar for Winter Automated Driving* , 2018, 2018 IEEE Intelligent Vehicles Symposium (IV).

[42]  Isaac Skog,et al.  Zero-Velocity Detection—An Algorithm Evaluation , 2010, IEEE Transactions on Biomedical Engineering.

[43]  Wei Gao,et al.  FilterReg: Robust and Efficient Probabilistic Point-Set Registration Using Gaussian Filter and Twist Parameterization , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[44]  Simo Srkk,et al.  Bayesian Filtering and Smoothing , 2013 .

[45]  Yasin Almalioglu,et al.  Milli-RIO: Ego-Motion Estimation With Low-Cost Millimetre-Wave Radar , 2021, IEEE Sensors Journal.

[46]  Rongbing Li,et al.  LIDAR/MEMS IMU integrated navigation (SLAM) method for a small UAV in indoor environments , 2014, 2014 DGON Inertial Sensors and Systems (ISS).

[47]  Peter Iannucci,et al.  Automotive Collision Risk Estimation Under Cooperative Sensing , 2020, ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[48]  Andrew Kramer,et al.  Radar-Inertial Ego-Velocity Estimation for Visually Degraded Environments , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[49]  Bruno Scherzinger Precise Robust Positioning with Inertially Aided RTK , 2006 .

[50]  Todd E. Humphreys,et al.  Accurate Collaborative Globally-Referenced Digital Mapping with Standard GNSS , 2018, Sensors.

[51]  Thomas B. Schön,et al.  Using Inertial Sensors for Position and Orientation Estimation , 2017, Found. Trends Signal Process..

[52]  Ba-Ngu Vo,et al.  A Random-Finite-Set Approach to Bayesian SLAM , 2011, IEEE Transactions on Robotics.

[53]  Laurent Kneip,et al.  Collaborative monocular SLAM with multiple Micro Aerial Vehicles , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[54]  Suzanne Lesecq,et al.  Localization system in GPS-denied environments using radar and IMU measurements: Application to a smart white cane , 2019, 2019 18th European Control Conference (ECC).