The PACE 2017 Parameterized Algorithms and Computational Experiments Challenge: The Second Iteration

In this article, the Program Committee of the Second Parameterized Algorithms and Computational Experiments challenge (PACE 2017) reports on the second iteration of the PACE challenge. Track A featured the Treewidth problem and Track B the Minimum Fill-In problem. Over 44 participants on 17 teams from 11 countries submitted their implementations to the competition.

[1]  Steven Kelk,et al.  ToTo: An open database for computation, storage and retrieval of tree decompositions , 2017, Discret. Appl. Math..

[2]  Stefan Woltran,et al.  Answer Set Solving with Bounded Treewidth Revisited , 2017, LPNMR.

[3]  Peter Buneman,et al.  A characterisation of rigid circuit graphs , 1974, Discret. Math..

[4]  Sebastian Berndt,et al.  Jdrasil: A Modular Library for Computing Tree Decompositions , 2017, SEA.

[5]  Dan Gusfield,et al.  Reducing Problems in Unrooted Tree Compatibility to Restricted Triangulations of Intersection Graphs , 2012, WABI.

[6]  Hisao Tamaki,et al.  Positive-instance driven dynamic programming for treewidth , 2017, Journal of Combinatorial Optimization.

[7]  Joachim Gudmundsson,et al.  Turbocharging Treewidth Heuristics , 2016, IPEC.

[8]  Stefan Woltran,et al.  DynASP2.5: Dynamic Programming on Tree Decompositions in Action , 2017, IPEC.

[9]  Leizhen Cai,et al.  Fixed-Parameter Tractability of Graph Modification Problems for Hereditary Properties , 1996, Inf. Process. Lett..

[10]  Mikkel Thorup,et al.  All Structured Programs have Small Tree-Width and Good Register Allocation , 1998, Inf. Comput..

[11]  Fedor V. Fomin,et al.  Exact algorithms for treewidth and minimum fill-in ∗ † , 2006 .

[12]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[13]  David Bergman,et al.  A Benders Approach to the Minimum Chordal Completion Problem , 2015, CPAIOR.

[14]  Krishnendu Chatterjee,et al.  Optimal Reachability and a Space-Time Tradeoff for Distance Queries in Constant-Treewidth Graphs , 2016, ESA.

[15]  Pinar Heggernes,et al.  Faster Parameterized Algorithms for Minimum Fill-In , 2008, ISAAC.

[16]  Céline Scornavacca,et al.  OrthoMaM v8: a database of orthologous exons and coding sequences for comparative genomics in mammals. , 2014, Molecular biology and evolution.

[17]  M. Yannakakis Computing the Minimum Fill-in is NP^Complete , 1981 .

[18]  Hans L. Bodlaender,et al.  Computing Treewidth on the GPU , 2017, IPEC.

[19]  Fedor V. Fomin,et al.  Subexponential parameterized algorithm for minimum fill-in , 2011, SODA.

[20]  Yoichi Iwata,et al.  Linear-time Kernelization for Feedback Vertex Set , 2016, ICALP.

[21]  Roded Sharan,et al.  A Polynomial Approximation Algorithm for the Minimum Fill-In Problem , 2000, SIAM J. Comput..

[22]  Yota Otachi,et al.  On the treewidth of toroidal grids , 2016, Discret. Appl. Math..

[23]  Ioan Todinca,et al.  Treewidth and Minimum Fill-in: Grouping the Minimal Separators , 2001, SIAM J. Comput..

[24]  Andrew Gelfand,et al.  Pushing the Power of Stochastic Greedy Ordering Schemes for Inference in Graphical Models , 2011, AAAI.

[25]  Christian Komusiewicz,et al.  The First Parameterized Algorithms and Computational Experiments Challenge , 2017, IPEC.

[26]  Frédéric Delsuc,et al.  OrthoMaM: A database of orthologous genomic markers for placental mammal phylogenetics , 2007, BMC Evolutionary Biology.

[27]  Haim Kaplan,et al.  Tractability of parameterized completion problems on chordal and interval graphs: minimum fill-in and physical mapping , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[28]  Stefan Szeider,et al.  SAT-Encodings for Special Treewidth and Pathwidth , 2017, SAT.

[29]  Robert E. Tarjan,et al.  Decomposition by clique separators , 1985, Discret. Math..

[30]  Stefan Woltran,et al.  htd - A Free, Open-Source Framework for (Customized) Tree Decompositions and Beyond , 2017, CPAIOR.