DGSA: A Matlab toolbox for distance-based generalized sensitivity analysis of geoscientific computer experiments

Abstract Sensitivity analysis plays an important role in geoscientific computer experiments, whether for forecasting, data assimilation or model calibration. In this paper we focus on an extension of a method of regionalized sensitivity analysis (RSA) to applications typical in the Earth Sciences. Such applications involve the building of large complex spatial models, the application of computationally extensive forward modeling codes and the integration of heterogeneous sources of model uncertainty. The aim of this paper is to be practical: 1) provide a Matlab code, 2) provide novel visualization methods to aid users in getting a better understanding in the sensitivity 3) provide a method based on kernel principal component analysis (KPCA) and self-organizing maps (SOM) to account for spatial uncertainty typical in Earth Science applications and 4) provide an illustration on a real field case where the above mentioned complexities present themselves. We present methods that extend the original RSA method in several ways. First we present the calculation of conditional effects, defined as the sensitivity of a parameter given a level of another parameters. Second, we show how this conditional effect can be used to choose nominal values or ranges to fix insensitive parameters aiming to minimally affect uncertainty in the response. Third, we develop a method based on KPCA and SOM to assign a rank to spatial models in order to calculate the sensitivity on spatial variability in the models. A large oil/gas reservoir case is used as illustration of these ideas.

[1]  Zhenzhou Lu,et al.  Variable importance analysis: A comprehensive review , 2015, Reliab. Eng. Syst. Saf..

[2]  Alberto Guadagnini,et al.  Global sensitivity analysis through polynomial chaos expansion of a basin-scale geochemical compaction model , 2013, Computational Geosciences.

[3]  Stefano Tarantola,et al.  Uncertainty and sensitivity analysis: tools for GIS-based model implementation , 2001, Int. J. Geogr. Inf. Sci..

[4]  I. Sobol Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[5]  Emmanuel Manceau,et al.  Uncertainty management: From geological scenarios to production scheme optimization , 2004 .

[6]  Sergey Oladyshkin,et al.  Global sensitivity analysis: a flexible and efficient framework with an example from stochastic hydrogeology , 2012 .

[7]  J. Caers,et al.  Dynamic data integration for structural modeling: model screening approach using a distance-based model parameterization , 2008 .

[8]  Irene Epifanio López Mapping the Asymmetrical Citation Relationships Between Journals by h-Plots , 2014 .

[9]  Stefan Finsterle,et al.  Making sense of global sensitivity analyses , 2014, Comput. Geosci..

[10]  Nong Shang,et al.  Parameter uncertainty and interaction in complex environmental models , 1994 .

[11]  R. Spear Eutrophication in peel inlet—II. Identification of critical uncertainties via generalized sensitivity analysis , 1980 .

[12]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[13]  Jef Caers,et al.  Can Geostatistical Models Represent Nature’s Variability? An Analysis Using Flume Experiments , 2015 .

[14]  Tapan Mukerji,et al.  Probabilistic falsification of prior geologic uncertainty with seismic amplitude data: Application to a turbidite reservoir case , 2015 .

[15]  Martin J. Blunt,et al.  A 3D Field-Scale Streamline-Based Reservoir Simulator , 1997 .

[16]  Thomas P. Ryan,et al.  Modern Regression Methods , 1996 .

[17]  D. F. Watson,et al.  The distinction between probabilistic prediction and statistical decision-making , 1986 .

[18]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[19]  B. Iooss,et al.  Global sensitivity analysis for a numerical model of radionuclide migration from the RRC “Kurchatov Institute” radwaste disposal site , 2008 .

[20]  Thomas S. Ahlbrandt,et al.  The Sirte Basin province of Libya; Sirte-Zelten total petroleum system , 2001 .

[21]  Brian J. Willis,et al.  Identifying and estimating significant geologic parameters with experimental design , 2001 .

[22]  Florian Pappenberger,et al.  Multi-method global sensitivity analysis of flood inundation models. , 2008 .

[23]  Stefano Tarantola,et al.  Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models , 2004 .

[24]  J. P. Dejean,et al.  Managing Uncertainties on Production Predictions Using Integrated Statistical Methods , 1999 .

[25]  Jeremy Rohmer Combining meta-modeling and categorical indicators for global sensitivity analysis of long-running flow simulators with spatially dependent inputs , 2014, Computational Geosciences.

[26]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[27]  L. Durlofsky,et al.  Kernel Principal Component Analysis for Efficient, Differentiable Parameterization of Multipoint Geostatistics , 2008 .

[28]  Murugesu Sivapalan,et al.  Spatiotemporal scaling of hydrological and agrochemical export dynamics in a tile‐drained Midwestern watershed , 2011 .

[29]  A. Boucher,et al.  History matching and uncertainty quantification of facies models with multiple geological interpretations , 2013, Computational Geosciences.

[30]  Wenxi Lu,et al.  Sobol′ sensitivity analysis of NAPL-contaminated aquifer remediation process based on multiple surrogates , 2014, Comput. Geosci..

[31]  Dongxiao Zhang,et al.  An efficient, high-order perturbation approach for flow in random porous media via Karhunen-Loève and polynomial expansions , 2004 .

[32]  Allard W. Martinius,et al.  Uncertainty analysis of fluvial outcrop data for stochastic reservoir modelling , 2005, Petroleum Geoscience.

[33]  Jef Caers,et al.  Quantifying Asymmetric Parameter Interactions in Sensitivity Analysis: Application to Reservoir Modeling , 2014, Mathematical Geosciences.

[34]  L. Hu Gradual Deformation and Iterative Calibration of Gaussian-Related Stochastic Models , 2000 .

[35]  George E. Karniadakis,et al.  Multi-element probabilistic collocation method in high dimensions , 2010, J. Comput. Phys..

[36]  Darryl Fenwick,et al.  Using Metric Space Methods to Analyse Reservoir Uncertainty , 2011 .

[37]  Flavio Cannavó,et al.  Sensitivity analysis for volcanic source modeling quality assessment and model selection , 2012, Comput. Geosci..

[38]  Stefano Tarantola,et al.  Sensitivity analysis of spatial models , 2009, Int. J. Geogr. Inf. Sci..

[39]  Jef Caers,et al.  Modeling Uncertainty in the Earth Sciences , 2011 .

[40]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[41]  Soroosh Sorooshian,et al.  Sensitivity analysis of a land surface scheme using multicriteria methods , 1999 .

[42]  N Oreskes,et al.  Verification, Validation, and Confirmation of Numerical Models in the Earth Sciences , 1994, Science.

[43]  Alberto Guadagnini,et al.  Use of global sensitivity analysis and polynomial chaos expansion for interpretation of nonreactive transport experiments in laboratory‐scale porous media , 2011 .

[44]  Alexandre Boucher,et al.  SGEMS-UQ: An uncertainty quantification toolkit for SGEMS , 2014, Comput. Geosci..

[45]  Enrico Zio,et al.  Polynomial chaos expansion for global sensitivity analysis applied to a model of radionuclide migration in a randomly heterogeneous aquifer , 2013, Stochastic Environmental Research and Risk Assessment.

[46]  Xiang Ma,et al.  Kernel principal component analysis for stochastic input model generation , 2010, J. Comput. Phys..

[47]  Mark Bentley,et al.  Reservoir Model Design: A Practitioner's Guide , 2015 .

[48]  P. Reed,et al.  Hydrology and Earth System Sciences Discussions Comparing Sensitivity Analysis Methods to Advance Lumped Watershed Model Identification and Evaluation , 2022 .

[49]  Yakov A. Pachepsky,et al.  Sensitivity analysis of unsaturated flow and contaminant transport with correlated parameters , 2011, Journal of Hydrology.

[50]  Jef Caers,et al.  Representing Spatial Uncertainty Using Distances and Kernels , 2009 .

[51]  T. Kohonen Self-organized formation of topographically correct feature maps , 1982 .

[52]  S. Grunwald,et al.  A global sensitivity analysis tool for the parameters of multivariable catchment models , 2006 .

[53]  R. Srinivasan,et al.  A global sensitivity analysis tool for the parameters of multi-variable catchment models , 2006 .

[54]  Bertrand Iooss,et al.  Global sensitivity analysis for models with spatially dependent outputs , 2009, 0911.1189.

[55]  Jiang Xie,et al.  Efficient and Robust Uncertainty Quantification in Reservoir Simulation with Polynomial Chaos Expansions and Non-intrusive Spectral Projection , 2011, ANSS 2011.

[56]  Christopher D. White,et al.  Efficient Design of Reservoir Simulation Studies for Development and Optimization , 2007 .

[57]  Alberto Guadagnini,et al.  Comparative analysis of formulations for conservative transport in porous media through sensitivity‐based parameter calibration , 2013 .

[58]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[59]  C. Tiedeman,et al.  Effective Groundwater Model Calibration: With Analysis of Data, Sensitivities, Predictions, and Uncertainty , 2007 .