Steady Flow of a Navier-Stokes Fluid Around a Rotating Obstacle

Let ℬ be a body immersed in a Navier-Stokes liquid ℒ that fills the whole space. Assume that ℬ rotates with prescribed constant angular velocity ω. We show that if the magnitude of ω is not “too large”, there exists one and only one corresponding steady motion of ℒ such that the velocity field v(x) and its gradient grad v(x) decay like |x|−1 and |x|−2, respectively. Moreover, the pressure field p(x) and its gradient grad p(x) decay like |x|−2 and |x|−3, respectively. These solutions are “physically reasonable” in the sense of Finn. In particular, they are unique and satisfy the energy equation. This result is relevant to several applications, including sedimentation of heavy particles in a viscous liquid.

[1]  R. Finn On the exterior stationary problem for the navier-stokes equations, and associated perturbation problems , 1965 .

[2]  J. G. Heywood,et al.  On the Global Existence and Convergence to Steady State of Navier-Stokes Flow Past an Obstacle that is Started from Rest , 1997 .

[3]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .

[4]  A. Novotný,et al.  Note on decay of solutions of steady Navier-Stokes equations in $3$-D exterior domains , 1995, Differential and Integral Equations.

[5]  G. Galdi An Introduction to the Mathematical Theory of the Navier-Stokes Equations : Volume I: Linearised Steady Problems , 1994 .

[6]  Toshiaki Hishida,et al.  An Existence Theorem¶for the Navier-Stokes Flow¶in the Exterior of a Rotating Obstacle , 1999 .

[7]  C. W. Oseen,et al.  Neuere Methoden und Ergebnisse in der Hydrodynamik , 1927 .

[8]  R. Wells,et al.  Fluid Drop-Like Transition of Erythrocytes under Shear , 1969, Science.

[9]  Ashwin Vaidya,et al.  Translational Steady Fall of Symmetric Bodies in a Navier-Stokes Liquid, with Application to Particle Sedimentation , 2001 .

[10]  G. Kirchhoff Ueber die Bewegung eines Rotationskörpers in einer Flüssigkeit. , 1870 .

[11]  P. Deuring On H2-Estimates of Solutions to the Stokes System with an Artificial Boundary Condition , 2002 .

[12]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[13]  F. K. G. Odqvist,et al.  Über die Randwertaufgaben der Hydrodynamik zäher Flüssigkeiten , 1930 .

[14]  Suresh G. Advani,et al.  Flow and rheology in polymer composites manufacturing , 1994 .

[15]  T. Hishida THE STOKES OPERATOR WITH ROTATION EFFECT IN EXTERIOR DOMAINS , 1999 .

[16]  G. Weill,et al.  Simultaneous measurements of mobility, dispersion, and orientation of DNA during steady-field gel electrophoresis coupling a fluorescence recovery after photobleaching apparatus with a fluorescence detected linear dichroism setup. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  G. Galdi,et al.  On the Asymptotic Behavior of Physically Reasonable Solutions to the Stationary Navier—Stokes System in Three-dimensional Exterior Domains with Zero Velocity at Infinity , 2000 .

[18]  Zhimin Chen,et al.  Decay properties of weak solutions to a perturbed Navier-Stokes system in Rn , 1997 .

[19]  K. Babenko ON STATIONARY SOLUTIONS OF THE PROBLEM OF FLOW PAST A BODY OF A VISCOUS INCOMPRESSIBLE FLUID , 1973 .

[20]  D. Serre,et al.  Chute libre d’un solide dans un fluide visqueux incompressible. existence , 1987 .

[21]  Giovanni P. Galdi,et al.  Chapter 7 – On the Motion of a Rigid Body in a Viscous Liquid: A Mathematical Analysis with Applications , 2002 .

[22]  The steady motion of a particle of arbitrary shape at small Reynolds numbers , 1965 .

[23]  E. Thomann,et al.  Hydrodynamic Forces on Submerged Rigid Bodies — Steady Flow , 2002 .

[24]  Jean Leray,et al.  Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'Hydrodynamique. , 1933 .