Optimal Gaussian approximations to the posterior for log-linear models with Diaconis-Ylvisaker priors

In contingency table analysis, sparse data is frequently encountered for even modest numbers of variables, resulting in non-existence of maximum likelihood estimates. A common solution is to obtain regularized estimates of the parameters of a log-linear model. Bayesian methods provide a coherent approach to regularization, but are often computationally intensive. Conjugate priors ease computational demands, but the conjugate Diaconis-Ylvisaker priors for the parameters of log-linear models do not give rise to closed form credible regions, complicating posterior inference. Here we derive the optimal Gaussian approximation to the posterior for log-linear models with Diaconis-Ylvisaker priors, and provide convergence rate and finite-sample bounds for the Kullback-Leibler divergence between the exact posterior and the optimal Gaussian approximation. We demonstrate empirically in simulations and a real data application that the approximation is highly accurate, even in relatively small samples. The proposed approximation provides a computationally scalable and principled approach to regularized estimation and approximate Bayesian inference for log-linear models.

[1]  D. Dunson,et al.  Simplex Factor Models for Multivariate Unordered Categorical Data , 2012, Journal of the American Statistical Association.

[2]  Helene Massam,et al.  Bayes factors and the geometry of discrete hierarchical loglinear models , 2011, 1103.5381.

[3]  Brian J Reich,et al.  Consistent High-Dimensional Bayesian Variable Selection via Penalized Credible Regions , 2012, Journal of the American Statistical Association.

[4]  Stephen E. Fienberg,et al.  Three centuries of categorical data analysis: Log-linear models and maximum likelihood estimation , 2007 .

[5]  Yang Jing L1 Regularization Path Algorithm for Generalized Linear Models , 2008 .

[6]  P. Dellaportas,et al.  Markov chain Monte Carlo model determination for hierarchical and graphical log-linear models , 1999 .

[7]  S. Haberman Log-Linear Models for Frequency Tables Derived by Indirect Observation: Maximum Likelihood Equations , 1974 .

[8]  A. Dobra,et al.  Copula Gaussian graphical models and their application to modeling functional disability data , 2011, 1108.1680.

[9]  James G. Scott,et al.  Bayesian Inference for Logistic Models Using Pólya–Gamma Latent Variables , 2012, 1205.0310.

[10]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[11]  Hagai Attias,et al.  Inferring Parameters and Structure of Latent Variable Models by Variational Bayes , 1999, UAI.

[12]  H. Massam,et al.  A conjugate prior for discrete hierarchical log-linear models , 2006, 0711.1609.

[13]  Bo Wang,et al.  Lack of Consistency of Mean Field and Variational Bayes Approximations for State Space Models , 2004, Neural Processing Letters.

[14]  Bo Wang,et al.  Inadequacy of interval estimates corresponding to variational Bayesian approximations , 2005, AISTATS.

[15]  Steffen L. Lauritzen,et al.  Graphical models in R , 1996 .

[16]  Feng Qi,et al.  The Best Lower and Upper Bounds of Harmonic Sequence , 2003 .

[17]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[18]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[19]  Adrian E. Raftery,et al.  Bayesian Model Averaging , 1998 .

[20]  H. Massam,et al.  The mode oriented stochastic search (MOSS) algorithm for log-linear models with conjugate priors , 2010 .

[21]  Alan Agresti,et al.  Categorical Data Analysis , 1991, International Encyclopedia of Statistical Science.

[22]  Stephen E. Fienberg,et al.  Discrete Multivariate Analysis: Theory and Practice , 1976 .

[23]  L. Tierney,et al.  Accurate Approximations for Posterior Moments and Marginal Densities , 1986 .

[24]  P. Diaconis,et al.  Conjugate Priors for Exponential Families , 1979 .

[25]  A. Agresti,et al.  Categorical Data Analysis , 1991, International Encyclopedia of Statistical Science.

[26]  Peter McCullagh,et al.  Laplace Approximation of High Dimensional Integrals , 1995 .

[27]  Adrian E. Raftery,et al.  Bayesian model averaging: development of an improved multi-class, gene selection and classification tool for microarray data , 2005, Bioinform..