Strategies for improving early detection of glaucoma: the combined structure–function index

The early detection of glaucoma is important in order to enable appropriate monitoring and treatment, and to minimize the risk of irreversible visual field loss. Although advances in ocular imaging offer the potential for earlier diagnosis, the best method is likely to involve a combination of information from structural and functional tests. Recent studies have shown it is possible to estimate the number of retinal ganglion cells from optical coherence tomography and standard automated perimetry, and to then pool the results to produce a combined structure–function index (CSFI). The CSFI represents the estimated percentage of retinal ganglion cells lost compared to an age-matched healthy eye. Previous studies have suggested that the CSFI is better able to detect glaucoma than isolated measures of structure and function, and that it performs well even in preperimetric glaucoma. The purpose of this review is to describe new strategies, such as the CSFI, that have the potential to improve the early detection of glaucoma. We also describe how our ability to detect early glaucoma may be further enhanced by incorporating demographic risk factors, clinical examination findings, and imaging and functional test results into intuitive models that provide estimates of disease probability.

[1]  H. Quigley,et al.  Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. , 2000, Investigative ophthalmology & visual science.

[2]  William H Swanson,et al.  Perimetric defects and ganglion cell damage: interpreting linear relations using a two-stage neural model. , 2004, Investigative ophthalmology & visual science.

[3]  S. Graham,et al.  Detection of early visual field loss in glaucoma using frequency-doubling perimetry and short-wavelength automated perimetry. , 2003, Archives of ophthalmology.

[4]  F. Medeiros,et al.  Evaluation of progressive neuroretinal rim loss as a surrogate end point for development of visual field loss in glaucoma. , 2014, Ophthalmology.

[5]  Andrew Carkeet,et al.  Motion perception in glaucoma patients: a review. , 2003, Survey of ophthalmology.

[6]  Nicholas G Strouthidis,et al.  Optic disc and visual field progression in ocular hypertensive subjects: detection rates, specificity, and agreement. , 2006, Investigative ophthalmology & visual science.

[7]  Robert N Weinreb,et al.  Comparison of retinal nerve fiber layer and optic disc imaging for diagnosing glaucoma in patients suspected of having the disease. , 2008, Ophthalmology.

[8]  C. Johnson,et al.  Screening for glaucomatous visual field loss with frequency-doubling perimetry. , 1997, Investigative ophthalmology & visual science.

[9]  Chris A. Johnson,et al.  The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. , 2002, Archives of ophthalmology.

[10]  Robert N Weinreb,et al.  The structure and function relationship in glaucoma: implications for detection of progression and measurement of rates of change. , 2012, Investigative ophthalmology & visual science.

[11]  Robert N Weinreb,et al.  Comparison of the diagnostic accuracies of the Spectralis, Cirrus, and RTVue optical coherence tomography devices in glaucoma. , 2011, Ophthalmology.

[12]  Roberta McKean-Cowdin,et al.  Severity of visual field loss and health-related quality of life. , 2007, American journal of ophthalmology.

[13]  G. Spaeth,et al.  Evaluation of quality of life for patients with glaucoma. , 2006, American journal of ophthalmology.

[14]  Susan Vitale,et al.  Agreement among glaucoma specialists in assessing progressive disc changes from photographs in open-angle glaucoma patients. , 2009, American journal of ophthalmology.

[15]  F. Medeiros,et al.  Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. , 2005, American journal of ophthalmology.

[16]  Richard A. Russell,et al.  Structure-function relationship between FDF, FDT, SAP, and scanning laser ophthalmoscopy in glaucoma patients. , 2012, Investigative ophthalmology & visual science.

[17]  F. Fitzke,et al.  Scaling the hill of vision: the physiological relationship between light sensitivity and ganglion cell numbers. , 2000, Investigative ophthalmology & visual science.

[18]  G. Wollstein,et al.  Identification of early glaucoma cases with the scanning laser ophthalmoscope. , 1998, Ophthalmology.

[19]  F. Medeiros,et al.  Prediction of functional loss in glaucoma from progressive optic disc damage. , 2009, Archives of ophthalmology.

[20]  F. Medeiros,et al.  Heidelberg Edge Perimetry for the Detection of Early Glaucomatous Damage: A Case Report , 2013, Case Reports in Ophthalmology.

[21]  C. Johnson,et al.  Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss. , 1993, Archives of ophthalmology.

[22]  F W Fitzke,et al.  Use of sequential Heidelberg retina tomograph images to identify changes at the optic disc in ocular hypertensive patients at risk of developing glaucoma , 2000, The British journal of ophthalmology.

[23]  A J Adams,et al.  Progression of early glaucomatous visual field loss as detected by blue-on-yellow and standard white-on-white automated perimetry. , 1993, Archives of ophthalmology.

[24]  Donald C. Hood,et al.  A framework for comparing structural and functional measures of glaucomatous damage , 2007, Progress in Retinal and Eye Research.

[25]  F. Medeiros,et al.  Retinal ganglion cell count estimates associated with early development of visual field defects in glaucoma. , 2013, Ophthalmology.

[26]  G. Mcgwin,et al.  Discrimination between glaucomatous and nonglaucomatous eyes using quantitative imaging devices and subjective optic nerve head assessment. , 2006, Investigative ophthalmology & visual science.

[27]  D. Friedman,et al.  Primary open-angle glaucoma , 2016, Nature Reviews Disease Primers.

[28]  M. Nicolela,et al.  Incidence and rates of visual field progression after longitudinally measured optic disc change in glaucoma. , 2009, Ophthalmology.

[29]  G. Guyatt,et al.  Users' guides to the medical literature. , 1993, JAMA.

[30]  C. Cheung,et al.  Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography a study on diagnostic agreement with Heidelberg Retinal Tomograph. , 2010, Ophthalmology.

[31]  Barry B. Lee,et al.  An examination of physiological mechanisms underlying the frequency-doubling illusion. , 2002, Investigative ophthalmology & visual science.

[32]  M. Morales i Ballús,et al.  The number of people with glaucoma worldwide in 2010 and 2020 , 2006 .

[33]  H. Quigley,et al.  The number of people with glaucoma worldwide in 2010 and 2020 , 2006, British Journal of Ophthalmology.

[34]  Samantha McGinnigle,et al.  Linking structure and function in glaucoma , 2022 .

[35]  P A Sample,et al.  Color perimetry for assessment of primary open-angle glaucoma. , 1990, Investigative ophthalmology & visual science.

[36]  A. Coleman,et al.  Comparison of optic nerve imaging methods to distinguish normal eyes from those with glaucoma. , 2002, Investigative ophthalmology & visual science.

[37]  G. Dunkelberger,et al.  Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. , 1989, American journal of ophthalmology.

[38]  R. D'Agostino,et al.  Validated prediction model for the development of primary open-angle glaucoma in individuals with ocular hypertension. , 2007, Ophthalmology.

[39]  R S Harwerth,et al.  Ganglion cell losses underlying visual field defects from experimental glaucoma. , 1999, Investigative ophthalmology & visual science.

[40]  R. Pandey,et al.  Evaluation of optical coherence tomography and heidelberg retinal tomography parameters in detecting early and moderate glaucoma. , 2007, Investigative ophthalmology & visual science.

[41]  G. Guyatt,et al.  Users' guides to the medical literature. III. How to use an article about a diagnostic test. B. What are the results and will they help me in caring for my patients? The Evidence-Based Medicine Working Group. , 1994, JAMA.

[42]  J. Caprioli,et al.  Optical coherence tomography to detect and manage retinal disease and glaucoma. , 2004, American journal of ophthalmology.

[43]  Robert N Weinreb,et al.  Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes. , 2013, Ophthalmology.

[44]  Richard A. Russell,et al.  Improved estimates of visual field progression using bayesian linear regression to integrate structural information in patients with ocular hypertension. , 2012, Investigative ophthalmology & visual science.

[45]  Robert N. Weinreb,et al.  Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. , 2010, Ophthalmology.

[46]  B. Chauhan,et al.  Longitudinal changes in the visual field and optic disc in glaucoma , 2005, Progress in Retinal and Eye Research.

[47]  Robert N Weinreb,et al.  Visual function-specific perimetry to identify glaucomatous visual loss using three different definitions of visual field abnormality. , 2009, Investigative ophthalmology & visual science.

[48]  Stephen W. Sorensen,et al.  The cost-effectiveness of routine office-based identification and subsequent medical treatment of primary open-angle glaucoma in the United States. , 2009, Ophthalmology.

[49]  F. Medeiros,et al.  Effect of disease severity on the performance of Cirrus spectral-domain OCT for glaucoma diagnosis. , 2010, Investigative ophthalmology & visual science.

[50]  Robert N Weinreb,et al.  Identifying glaucomatous vision loss with visual-function-specific perimetry in the diagnostic innovations in glaucoma study. , 2006, Investigative ophthalmology & visual science.

[51]  William J Feuer,et al.  Sensitivity and specificity of time-domain versus spectral-domain optical coherence tomography in diagnosing early to moderate glaucoma. , 2009, Ophthalmology.

[52]  F. Medeiros,et al.  Predicting progression in glaucoma suspects with longitudinal estimates of retinal ganglion cell counts. , 2013, Investigative ophthalmology & visual science.

[53]  F. Medeiros,et al.  Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma. , 2004, Archives of ophthalmology.

[54]  Robert N Weinreb,et al.  Estimating the rate of retinal ganglion cell loss in glaucoma. , 2012, American journal of ophthalmology.

[55]  Earl L. Smith,et al.  Neural losses correlated with visual losses in clinical perimetry. , 2004, Investigative ophthalmology & visual science.

[56]  Robert N Weinreb,et al.  Use of progressive glaucomatous optic disk change as the reference standard for evaluation of diagnostic tests in glaucoma. , 2005, American journal of ophthalmology.

[57]  S. Resnikoff,et al.  Global data on visual impairment in the year 2002. , 2004, Bulletin of the World Health Organization.

[58]  G. Wollstein,et al.  Identifying early glaucomatous changes. Comparison between expert clinical assessment of optic disc photographs and confocal scanning ophthalmoscopy. , 2000, Ophthalmology.

[59]  F. Medeiros,et al.  A combined index of structure and function for staging glaucomatous damage. , 2012, Archives of ophthalmology.

[60]  W. Swanson,et al.  ‘Structure–function relationship’ in glaucoma: past thinking and current concepts , 2012, Clinical & experimental ophthalmology.

[61]  H. Quigley Number of people with glaucoma worldwide. , 1996, The British journal of ophthalmology.

[62]  Shu Liu,et al.  Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis. , 2010, Investigative ophthalmology & visual science.

[63]  E. E. Hartmann,et al.  The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. , 2002, Archives of ophthalmology.

[64]  L. Zangwill,et al.  Discriminating between normal and glaucomatous eyes using the Heidelberg Retina Tomograph, GDx Nerve Fiber Analyzer, and Optical Coherence Tomograph. , 2001, Archives of ophthalmology.

[65]  Valter Torri,et al.  Results of the European Glaucoma Prevention Study. , 2005, Ophthalmology.

[66]  Shu Liu,et al.  Comparison of standard automated perimetry, frequency-doubling technology perimetry, and short-wavelength automated perimetry for detection of glaucoma. , 2011, Investigative ophthalmology & visual science.

[67]  A. Tafreshi,et al.  Diagnosing preperimetric glaucoma with spectral domain optical coherence tomography. , 2012, Ophthalmology.

[68]  F. Medeiros,et al.  Likelihood ratios for glaucoma diagnosis using spectral-domain optical coherence tomography. , 2013, American journal of ophthalmology.

[69]  Robert N Weinreb,et al.  Combining structural and functional measurements to improve detection of glaucoma progression using Bayesian hierarchical models. , 2011, Investigative ophthalmology & visual science.

[70]  F. Medeiros,et al.  Frequency doubling technology perimetry abnormalities as predictors of glaucomatous visual field loss. , 2004, American journal of ophthalmology.

[71]  F. Medeiros,et al.  A statistical approach to the evaluation of covariate effects on the receiver operating characteristic curves of diagnostic tests in glaucoma. , 2006, Investigative ophthalmology & visual science.

[72]  Philipp Dahm,et al.  Evidence-Based Surgery Chirurgie factuelle Users ’ guides to the surgical literature : how to use an article about a diagnostic test , 2001 .