Development and trends in synchrotron studies of ancient and historical materials

Abstract Synchrotron photon-based methods are increasingly being used for the physico-chemical study of ancient and historical materials (archaeology, palaeontology, conservation sciences, palaeo-environments). In particular, parameters such as the high photon flux, the small source size and the low divergence attained at the synchrotron make it a very efficient source for a range of advanced spectroscopy and imaging techniques, adapted to the heterogeneity and great complexity of the materials under study. The continuous tunability of the source — its very extended energy distribution over wide energy domains (meV to keV) with a high intensity — is an essential parameter for techniques based on a very fine tuning of the probing energy to reach high chemical sensitivity such as XANES, EXAFS, STXM, UV/VIS spectrometry, etc . The small source size attained (a few micrometres) at least in the vertical plane leads to spatial coherence of the photon beams, giving rise in turn to a series of imaging methods already crucial to the field. This review of the existing literature shows that microfocused hard X-ray spectroscopy (absorption, fluorescence, diffraction), full-field X-ray tomography and infrared spectroscopy are the leading synchrotron techniques in the field, and presents illustrative examples of the study of ancient and historical materials for the various methods. Fast developing analytical modalities in scanning spectroscopy (STXM, macro-XRF scanning) and novel analytical strategies regarding optics, detectors and other instrumental developments are expected to provide major contributions in the years to come. Other energy domains are increasingly being used or considered such as far-infrared and ultraviolet/visible for spectroscopy and imaging. We discuss the main instrumental developments and perspectives, and their impact for the science being made on ancient materials using synchrotron techniques.

[1]  C. Jacobsen,et al.  Carbon (1s) NEXAFS spectroscopy of biogeochemically relevant reference organic compounds , 2009 .

[2]  A. Knoll,et al.  Organic chemical differentiation within fossil plant cell walls detected with X-ray spectromicroscopy , 2002 .

[3]  J. Miao,et al.  Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens , 1999, Nature.

[4]  Marco Stampanoni,et al.  Fast reconstruction algorithm dealing with tomography artifacts , 2010, Optical Engineering + Applications.

[5]  M. Cannas,et al.  Room temperature instability of E'gamma centers induced by gamma irradiation in amorphous SiO2. , 2009, The journal of physical chemistry. A.

[6]  J. Kirz,et al.  Soft X-ray microscopes and their biological applications , 1995, Quarterly Reviews of Biophysics.

[7]  Loïc Bertrand,et al.  Imaging fossil bone alterations at the microscale by SR-FTIR microspectroscopy , 2011 .

[8]  A. Hagen,et al.  A Depth‐Resolved In‐Situ Study of the Reduction and Oxidation of Ni‐Based Anodes in Solid Oxide Fuel Cells , 2006 .

[9]  A. Mehta,et al.  Applications of focused ion beam for preparation of specimens of ancient ceramic for electron microscopy and synchrotron X-ray studies. , 2009, Micron.

[10]  Raster microdiffraction with synchrotron radiation of hydrated biopolymers with nanometre step-resolution: case study of starch granules , 2010, Journal of synchrotron radiation.

[11]  M Stampanoni,et al.  Implementation of a fast method for high resolution phase contrast tomography. , 2006, Optics express.

[12]  Atsushi Momose,et al.  Demonstration of phase-contrast X-ray computed tomography using an X-ray interferometer , 1995 .

[13]  P. Tafforeau,et al.  Three-Dimensional Pelvis and Limb Anatomy of the Cenomanian Hind-Limbed Snake Eupodophis descouensi (Squamata, Ophidia) Revealed by Synchrotron-Radiation Computed Laminography , 2011 .

[14]  James T Dobbins,et al.  Digital x-ray tomosynthesis: current state of the art and clinical potential. , 2003, Physics in medicine and biology.

[15]  Paul Dumas,et al.  Recent applications and current trends in Cultural Heritage Science using synchrotron-based Fourier transform infrared micro-spectroscopy , 2009 .

[16]  Gerry McDermott,et al.  Quantitative 3-D imaging of eukaryotic cells using soft X-ray tomography. , 2008, Journal of structural biology.

[17]  M. Burghammer,et al.  Coherent x-ray diffraction imaging with nanofocused illumination. , 2008, Physical review letters.

[18]  C. David,et al.  Beam-shaping condenser lenses for full-field transmission X-ray microscopy. , 2008, Journal of synchrotron radiation.

[19]  B. Kanngießer,et al.  Reconstruction of thickness and composition of stratified materials by means of 3D micro X-ray fluorescence spectroscopy. , 2008, Analytical chemistry.

[20]  A. Bronnikov,et al.  Theory of quantitative phase-contrast computed tomography. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[21]  O. Bunk,et al.  Ptychographic X-ray computed tomography at the nanoscale , 2010, Nature.

[22]  Carmelo Giacovazzo,et al.  Fundamentals of Crystallography , 2002 .

[23]  Marco Stampanoni,et al.  Phase-contrast tomography at the nanoscale using hard x rays , 2010 .

[24]  Paul Dumas,et al.  New insight on ancient cosmetic preparation by synchrotron-based infrared microscopy , 2005 .

[25]  Loïc Bertrand,et al.  Synchrotron UV-visible multispectral luminescence microimaging of historical samples. , 2011, Analytical chemistry.

[26]  F. Casadio,et al.  The darkening of zinc yellow: XANES speciation of chromium in artist's paints after light and chemical exposures , 2011 .

[27]  R. Harder,et al.  Coherent X-ray diffraction imaging of strain at the nanoscale. , 2009, Nature materials.

[28]  A. Snigirev,et al.  The use of small-angle x-ray diffraction studies for the analysis of structural features in archaeological samples , 2001 .

[29]  E. Stern,et al.  Extended x-ray-absorption fine-structure technique. II. Experimental practice and selected results , 1975 .

[30]  Peter Cloetens,et al.  Phase-contrast and holographic computed laminography , 2009 .

[31]  L Bertrand,et al.  Microbeam synchrotron imaging of hairs from ancient Egyptian mummies. , 2003, Journal of synchrotron radiation.

[32]  A. Mark Pollard,et al.  A Bicycle Made for Two? The Integration of Scientific Techniques into , 2007 .

[33]  Paul Tafforeau,et al.  Nondestructive imaging of hominoid dental microstructure using phase contrast X-ray synchrotron microtomography. , 2008, Journal of human evolution.

[34]  S X Cohen,et al.  European research platform IPANEMA at the SOLEIL synchrotron for ancient and historical materials. , 2011, Journal of synchrotron radiation.

[35]  U. Bonse,et al.  AN X‐RAY INTERFEROMETER , 1965 .

[36]  V. A. Solé,et al.  A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra , 2007 .

[37]  G. Falkenberg,et al.  Confocal microscopic X-ray fluorescence at the HASYLAB microfocus beamline: characteristics and possibilities , 2004 .

[38]  C. Larabell,et al.  High resolution protein localization using soft X‐ray microscopy , 2001, Journal of microscopy.

[39]  A Peres Tomographic reconstruction from limited angular data. , 1979, Journal of computer assisted tomography.

[40]  J. Madariaga,et al.  Vibrational Spectroscopic Techniques for the Analysis of Artefacts with Historical, Artistic and Archaeological Value , 2006 .

[41]  D. Bilderback,et al.  Nanometer spatial resolution achieved in hard x-ray imaging and Laue diffraction experiments. , 1994, Science.

[42]  Emmanuel Pantos,et al.  Advantages of the use of SR-FT-IR microspectroscopy: applications to cultural heritage. , 2005, Analytical chemistry.

[43]  R. Hark,et al.  Spectroscopy study of mural paintings from the Pyrenean Church of Saint Eulàlia of Unha , 2010 .

[44]  J. Susini,et al.  Kinetics of oil saponification by lead salts in ancient preparations of pharmaceutical lead plasters and painting lead mediums. , 2006, Talanta.

[45]  C. Jacobsen,et al.  Spatial complexity of soil organic matter forms at nanometre scales , 2008 .

[46]  Paul Dumas,et al.  THE USE OF SYNCHROTRON INFRARED MICROSPECTROSCOPY IN BIOLOGICAL AND BIOMEDICAL INVESTIGATIONS , 2003 .

[47]  E. Garman,et al.  Progress in research into radiation damage in cryo-cooled macromolecular crystals. , 2007, Journal of synchrotron radiation.

[48]  P J Withers,et al.  Region‐of‐interest tomography using filtered backprojection: assessing the practical limits , 2011, Journal of microscopy.

[49]  V. Briois,et al.  Combining two structural techniques on the micrometer scale: micro-XAS and micro-Raman spectroscopy. , 2007, Journal of synchrotron radiation.

[50]  P. Cloetens,et al.  Mixed transfer function and transport of intensity approach for phase retrieval in the Fresnel region. , 2007, Optics letters.

[51]  L. Bertrand,et al.  Novel interface for cultural heritage at SOLEIL , 2006 .

[52]  P. Lerch,et al.  Infrared imaging: Synchrotrons vs. arrays, resolution vs. speed , 2006 .

[53]  U. Bonse,et al.  AN X‐RAY INTERFEROMETER WITH LONG SEPARATED INTERFERING BEAM PATHS , 1965 .

[54]  P. Chevallier,et al.  Synchrotron radiation induced X-ray fluorescence at LURE , 1989 .

[55]  P. W. Levy Radiation damage studies on non-metals utilizing measurements made during irradiation , 1991 .

[56]  E. N. Maslen X-ray absorption , 2006 .

[57]  B. Lai,et al.  Nanometer focusing of hard x rays by phase zone plates , 1999 .

[58]  Koen Janssens,et al.  Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of synchrotron X-ray spectromicroscopy and related methods. 2. Original paint layer samples. , 2011, Analytical chemistry.

[59]  J. Als-Nielsen,et al.  Elements of Modern X-ray Physics: Als-Nielsen/Elements , 2011 .

[60]  E. Pisano,et al.  Diffraction enhanced x-ray imaging. , 1997, Physics in medicine and biology.

[61]  G. Silversmit,et al.  Fading of modern Prussian blue pigments in linseed oil medium , 2011 .

[62]  Theyencheri Narayanan,et al.  Synchrotron Small-Angle X-Ray Scattering , 2008, SMC 2008.

[63]  E. Foy,et al.  Copper tracing to determine the micrometric electronic properties of a thick ferrous corrosion layer formed in an anoxic medium , 2011 .

[64]  Vincent Mazel,et al.  COMBINATION OF FTIR AND X-RAYS SYNCHROTRON-BASED MICRO-IMAGING TECHNIQUES FOR THE STUDY OF ANCIENT PAINTINGS. A PRACTICAL POINT OF VIEW , 2009 .

[65]  Ulrich Bonse,et al.  X-ray computed microtomography (μCT) using synchrotron radiation (SR) , 1996 .

[66]  P. Chevallier,et al.  Analysis of Gaulish coins by proton induced X-ray emission, synchrotron radiation X-ray fluorescence and neutron activation analysis , 1990 .

[67]  A. Bravin,et al.  Applications of X-ray synchrotron microtomography for non-destructive 3 D studies of paleontological specimens , 2006 .

[68]  P. Delpierre,et al.  A 20 kpixels CdTe photon-counting imager using XPAD chip , 2008 .

[69]  H. Liebhafsky X-Ray Absorption , 1949 .

[70]  W. Yun,et al.  30 nm resolution x-ray imaging at 8 keV using third order diffraction of a zone plate lens objective in a transmission microscope , 2006 .

[71]  Virgilia Macias,et al.  High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams , 2011, Nature Methods.

[72]  M. Dowsett,et al.  Optically detected X-ray absorption spectroscopy measurements as a means of monitoring corrosion layers on copper. , 2008, Analytical chemistry.

[73]  Bertrand Lavédrine,et al.  The nature of the extraordinary finish of Stradivari's instruments. , 2010, Angewandte Chemie.

[74]  M. Stampanoni,et al.  Real Time Tomography at the Swiss Light Source , 2010 .

[75]  M. Papiz,et al.  Identification of copper-based green pigments in Jaume Huguet's Gothic altarpieces by Fourier transform infrared microspectroscopy and synchrotron radiation X-ray diffraction. , 2002, Journal of synchrotron radiation.

[76]  R. Kronig On the Theory of Dispersion of X-Rays , 1926 .

[77]  B. Lengeler,et al.  A compound refractive lens for focusing high-energy X-rays , 1996, Nature.

[78]  N. Kirby,et al.  Leather structure determination by small-angle X-ray scattering (SAXS): cross sections of ovine and bovine leather. , 2010, Journal of agricultural and food chemistry.

[79]  Keith W. Jones,et al.  Use of synchrotron radiation in archaeometry , 1986 .

[80]  U. Bergmanna,et al.  Archaeopteryx feathers and bone chemistry fully revealed via synchrotron imaging , 2010 .

[81]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[82]  J. Rodenburg,et al.  A phase retrieval algorithm for shifting illumination , 2004 .

[83]  Anne Sakdinawat,et al.  Soft-X-ray microscopy using spiral zone plates. , 2007, Optics letters.

[84]  J. Kirz,et al.  An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy. , 2005, Journal of Electron Spectroscopy and Related Phenomena.

[85]  M. Burghammer,et al.  Scanning x-ray diffraction with 200nm spatial resolution , 2008 .

[86]  H. Chapman Phase-retrieval X-ray microscopy by Wigner-distribution deconvolution , 1996 .

[87]  C. Riekel New avenues in x-ray microbeam experiments , 2000 .

[88]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[89]  Max Born,et al.  Principles of optics - electromagnetic theory of propagation, interference and diffraction of light (7. ed.) , 1999 .

[90]  Jennifer Hiller,et al.  The use of small-angle X-ray scattering to study archaeological and experimentally altered bone , 2006 .

[91]  P Wyeth,et al.  Characterizing the decay of ancient Chinese silk fabrics by microbeam synchrotron radiation diffraction. , 2006, Biomacromolecules.

[92]  Franz Pfeiffer,et al.  X-ray phase imaging with a grating interferometer. , 2005, Optics express.

[93]  Jian Wang,et al.  Radiation damage in soft X-ray microscopy , 2009 .

[94]  Peter Cloetens,et al.  Skull and brain of a 300-million-year-old chimaeroid fish revealed by synchrotron holotomography , 2009, Proceedings of the National Academy of Sciences.

[95]  A. Gourrier,et al.  Hard alpha-keratin degradation inside a tissue under high flux X-ray synchrotron micro-beam: a multi-scale time-resolved study. , 2010, Journal of structural biology.

[96]  Irina Snigireva,et al.  TRANSMISSION AND GAIN OF SINGLY AND DOUBLY FOCUSING REFRACTIVE X-RAY LENSES , 1998 .

[97]  H. Emerich,et al.  Identification of reaction compounds in micrometric layers from gothic paintings using combined SR-XRD and SR-FTIR. , 2009, Talanta.

[98]  Jean Susini,et al.  Applications of synchrotron-based micro-imaging techniques to the chemical analysis of ancient paintings , 2008 .

[99]  Sergei G. Kazarian,et al.  Micro- and Macro-Attenuated Total Reflection Fourier Transform Infrared Spectroscopic Imaging , 2010 .

[100]  Marco Stampanoni,et al.  Virtual taphonomy using synchrotron tomographic microscopy reveals cryptic features and internal structure of modern and fossil plants , 2009, Proceedings of the National Academy of Sciences.

[101]  M. Burghammer,et al.  Simultaneous microRaman and synchrotron radiation microdiffraction: Tools for materials characterization , 2005 .

[102]  I. Alberts,et al.  Microfocus Small Angle X-ray Scattering Reveals Structural Features in Archaeological Bone Samples; Detection of Changes in Bone Mineral Habit and Size , 2002, Calcified Tissue International.

[103]  Edward A. Stern,et al.  Extended x-ray-absorption fine-structure technique. III. Determination of physical parameters , 1975 .

[104]  U. Neuhäusler,et al.  A hard x-ray KB-FZP microscope for tomography with sub-100-nm resolution , 2006, SPIE Optics + Photonics.

[105]  Loïc Bertrand,et al.  First examination of slag inclusions in medieval armours by confocal SR-µ-XRF and LA-ICP-MS , 2011 .

[106]  Allan S. Jones,et al.  Iconography : Synchrotron X-ray imaging of inclusions in amber , 2010 .

[107]  A. Durán,et al.  Identification of cellulose fibres belonging to Spanish cultural heritage using synchrotron high resolution X-ray diffraction , 2010 .

[108]  S Schöder,et al.  Non‐destructive and quantitative imaging of a nano‐structured microchip by ptychographic hard X‐ray scanning microscopy , 2011, Journal of microscopy.

[109]  M. Drakopoulos,et al.  Microfocus X-ray Diffraction of Historical Parchment Reveals Variations in Structural Features through Parchment Cross Sections , 2004 .

[110]  Andrew D. Smith,et al.  Temperature resolved reproduction of medieval luster , 2007 .

[111]  I. Nakai,et al.  Application of SR-XRF Imaging and Micro-Xanes to Meteorites, Archaeological Objects and Animal Tissues , 1991 .

[112]  F. Rühli,et al.  Technical note: Terahertz imaging of ancient mummies and bone. , 2010, American journal of physical anthropology.

[113]  J. Susini,et al.  Submicrometer hyperspectral X-ray imaging of heterogeneous rocks and geomaterials: applications at the Fe k-edge. , 2011, Analytical chemistry.

[114]  F. Guyot,et al.  Exceptional preservation of fossil plant spores in high-pressure metamorphic rocks , 2007 .

[115]  V. A. Solé,et al.  Coupling a wavelength dispersive spectrometer with a synchrotron-based X-ray microscope: A winning combination for micro-X-ray fluorescence and micro-XANES analyses of complex artistic materials , 2011 .

[116]  O. Bunk,et al.  Ptychographic coherent diffractive imaging of weakly scattering specimens , 2010 .

[117]  P. Lerch,et al.  Spatial resolution limits for synchrotron-based spectromicroscopy in the mid- and near-infrared. , 2008, Journal of synchrotron radiation.

[118]  I. Robinson,et al.  Reconstruction of the shapes of gold nanocrystals using coherent x-ray diffraction. , 2001, Physical review letters.

[119]  R. Abela,et al.  Trends in synchrotron-based tomographic imaging: the SLS experience , 2006, SPIE Optics + Photonics.

[120]  Joris Dik,et al.  Terahertz imaging of hidden paint layers on canvas , 2009 .

[121]  P. Cloetens,et al.  High-resolution three-dimensional imaging of flat objects by synchrotron-radiation computed laminography , 2005 .

[122]  J. Als-Nielsen,et al.  Elements of Modern X-ray Physics , 2001 .

[123]  Magdalena N Muchlinski Ecological correlates of infraorbital foramen area in primates. , 2009, American journal of physical anthropology.

[124]  S. Wilkins,et al.  Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object , 2002, Journal of microscopy.

[125]  P. Duringer,et al.  Ultrastructural and chemical study of modern and fossil sporoderms by Scanning Transmission X-ray Microscopy (STXM) , 2009 .

[126]  Rinaldo Cubeddu,et al.  Fluorescence lifetime imaging and spectroscopy as tools for nondestructive analysis of works of art. , 2004, Applied optics.

[127]  Jakub Szlachetko,et al.  Synthesizing lead antimonate in ancient and modern opaque glass , 2011 .

[128]  A. Hofmann,et al.  The Physics of Synchrotron Radiation , 2004 .

[129]  Marika Spring,et al.  ATR-FTIR imaging for the analysis of organic materials in paint cross sections: case studies on paint samples from the National Gallery, London , 2008, Analytical and bioanalytical chemistry.

[130]  G. Botton,et al.  Comparison of NEXAFS microscopy and TEM-EELS for studies of soft matter. , 2008, Micron.

[131]  Timothy J. Davis,et al.  Direct measure of the phase shift of an x-ray beam , 1996 .

[132]  Koen Janssens,et al.  Synchrotron-based X-ray absorption spectroscopy for art conservation: looking back and looking forward. , 2010, Accounts of chemical research.

[133]  H. Soltau,et al.  Compact pnCCD-based X-ray camera with high spatial and energy resolution: a color X-ray camera. , 2011, Analytical chemistry.

[134]  Chris Jacobsen,et al.  Advantages of soft X-ray absorption over TEM-EELS for solid carbon studies––a comparative study on diesel soot with EELS and NEXAFS , 2005 .

[135]  Koen Janssens,et al.  Visualization of a lost painting by Vincent van Gogh using synchrotron radiation based X-ray fluorescence elemental mapping. , 2008, Analytical chemistry.

[136]  A. H. Walenta,et al.  Large-format, high-speed, X-ray pnCCDs combined with electron and ion imaging spectrometers in a multipurpose chamber for experiments at 4th generation light sources , 2010 .

[137]  A. G. Cullis,et al.  Hard-x-ray lensless imaging of extended objects. , 2007, Physical review letters.

[138]  Gerd Schneider,et al.  Cryo-X-ray tomography of vaccinia virus membranes and inner compartments. , 2009, Journal of structural biology.

[139]  Reiner Salzer,et al.  Infrared and Raman spectroscopic imaging , 2009 .

[140]  José Baruchel,et al.  X-Ray Tomography in Material Science , 2000 .

[141]  Mark D Sutton,et al.  Tomographic techniques for the study of exceptionally preserved fossils , 2008, Proceedings of the Royal Society B: Biological Sciences.

[142]  Avinash C. Kak,et al.  Principles of computerized tomographic imaging , 2001, Classics in applied mathematics.

[143]  Boon K. Teo,et al.  EXAFS: Basic Principles and Data Analysis , 1986 .

[144]  Matthieu Lebon,et al.  Microscale imaging of the preservation state of 5,000-year-old archaeological bones by synchrotron infrared microspectroscopy , 2010, Analytical and bioanalytical chemistry.

[145]  J. Hiller,et al.  Chapter 3 Investigation of diagenetic and postmortem bone mineral change by small-angle X-ray scattering , 2006 .

[146]  M. Cotte,et al.  Identification of ritual blood in African artifacts using TOF-SIMS and synchrotron radiation microspectroscopies. , 2007, Analytical chemistry.

[147]  P. Cloetens,et al.  Phase objects in synchrotron radiation hard x-ray imaging , 1996 .

[148]  A. Chamberlain,et al.  Small-angle X-ray scattering: a high-throughput technique for investigating archaeological bone preservation , 2004 .

[149]  K. Lonsdale X-Ray Diffraction , 1971, Nature.

[150]  A. Snigirev,et al.  On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation , 1995 .

[151]  B. Kanngießer,et al.  Handbook of practical X-ray fluorescence analysis , 2006 .

[152]  N. Tamura,et al.  The nature of marbled Terra Sigillata slips: a combined μXRF and μXRD investigation , 2010 .

[153]  Christian G. Schroer,et al.  Dose requirements for resolving a given feature in an object by coherent x-ray diffraction imaging , 2010 .

[154]  J. Miao,et al.  Imaging whole Escherichia coli bacteria by using single-particle x-ray diffraction , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[155]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[156]  P. Dillmann,et al.  Buried iron archaeological artefacts: Corrosion mechanisms related to the presence of Cl-containing phases , 2007 .

[157]  Loïc Bertrand,et al.  Identification of the finishing technique of an early eighteenth century musical instrument using FTIR spectromicroscopy , 2011, Analytical and bioanalytical chemistry.

[158]  J. Susini,et al.  Watching Ancient Paintings through Synchrotron-Based X-Ray Microscopes , 2009 .

[159]  Peter J. Eng,et al.  Dynamically figured Kirkpatrick Baez x-ray microfocusing optics , 1998, Optics & Photonics.

[160]  A. Simionovici,et al.  Ten years of x-ray holography , 2007 .

[161]  Gyula Faigel,et al.  X-Ray Holography , 1999 .

[162]  Marika Spring,et al.  Investigation of the discoloration of smalt pigment in historic paintings by micro-X-ray absorption spectroscopy at the Co K-edge. , 2011, Analytical chemistry.

[163]  E. Vicenzi,et al.  Focused ion beam milling: A method of site-specific sample extraction for microanalysis of Earth and planetary materials , 2001 .

[164]  Colin Renfrew,et al.  Archaeology: Theories, Methods, and Practice , 2012 .

[165]  Koen Janssens,et al.  High energy X-ray powder diffraction for the imaging of (hidden) paintings , 2011 .

[166]  E. M. Friis,et al.  Canrightia resinifera gen. et sp. nov., a new extinct angiosperm with Retimonocolpites-type pollen from the Early Cretaceous of Portugal: missing link in the eumagnoliid tree? , 2011 .

[167]  W. Ludwig,et al.  X-ray microscopy in Zernike phase contrast mode at 4 keV photon energy with 60 nm resolution , 2003 .

[168]  Peter Cloetens,et al.  Nanoscale zoom tomography with hard x rays using Kirkpatrick-Baez optics , 2007 .

[169]  J. Kirz,et al.  X-ray microscopy with synchrotron radiation , 1998, Nature Structural Biology.

[170]  Paul Dumas,et al.  Recent applications and current trends in analytical chemistry using synchrotron-based Fourier-transform infrared microspectroscopy , 2010 .

[171]  S. Wilkins,et al.  Phase-contrast imaging of weakly absorbing materials using hard X-rays , 1995, Nature.

[172]  André Guinier,et al.  X-ray Crystallography. (Book Reviews: X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies) , 1963 .

[173]  D. P. Siddons,et al.  Elemental X-ray imaging using the Maia detector array: The benefits and challenges of large solid-angle , 2009 .

[174]  J. H. Hubbell,et al.  XCOM : Photon Cross Sections Database , 2005 .

[175]  Manfred Burghammer,et al.  Identification of ancient textile fibres from Khirbet Qumran caves using synchrotron radiation microbeam diffraction , 2004 .

[176]  Jean Susini,et al.  Blackening of Pompeian cinnabar paintings: X-ray microspectroscopy analysis. , 2006, Analytical chemistry.

[177]  Paul Tafforeau,et al.  High quality 3D imaging of vertebrate microremains using X-ray synchrotron phase contrast microtomography , 2010 .

[178]  Erik H. Anderson,et al.  Nanofabrication and diffractive optics for high-resolution x-ray applications , 2000 .

[179]  P. Cloetens,et al.  Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays , 1999 .

[180]  Koen Janssens,et al.  The use of microscopic X-ray diffraction for the study of HgS and its degradation products corderoite (α-Hg3S2Cl2), kenhsuite (γ-Hg3S2Cl2) and calomel (Hg2Cl2) in historical paintings , 2011 .

[181]  G. Zschornack Handbook of X-Ray Data , 2007 .

[182]  Jacobsen,et al.  Soft X‐ray spectroscopy from image sequences with sub‐100 nm spatial resolution , 2000, Journal of microscopy.

[183]  B. Valeur,et al.  Molecular Fluorescence: Principles and Applications , 2001 .

[184]  J. Susini,et al.  Wavelength-dispersive spectrometer for X-ray microfluorescence analysis at the X-ray microscopy beamline ID21 (ESRF) , 2010, Journal of synchrotron radiation.

[185]  S Prati,et al.  New advances in the application of FTIR microscopy and spectroscopy for the characterization of artistic materials. , 2010, Accounts of chemical research.

[186]  Paola Coan,et al.  Relics in medieval altarpieces? Combining X-ray tomographic, laminographic and phase-contrast imaging to visualize thin organic objects in paintings. , 2008, Journal of synchrotron radiation.

[187]  Koen Janssens,et al.  Cultural heritage and archaeology materials studied by synchrotron spectroscopy and imaging , 2012 .

[188]  Tim Salditt,et al.  Hard x-ray nanobeam characterization by coherent diffraction microscopy , 2010 .

[189]  O. Paris From diffraction to imaging: New avenues in studying hierarchical biological tissues with x-ray microbeams (Review) , 2008, Biointerphases.

[190]  Aviva Burnstock,et al.  Identification of red colorants in van Gogh paintings and ancient Andean textiles by microspectrofluorimetry , 2010 .

[191]  Kevin W. Eliceiri,et al.  Opportunities for multiple-beam synchrotron-based mid-infrared imaging at IRENI , 2012 .