Spiking Neurons Integrating Visual Stimuli Orientation and Direction Selectivity in a Robotic Context

Visual motion detection is essential for the survival of many species. The phenomenon includes several spatial properties, not fully understood at the level of a neural circuit. This paper proposes a computational model of a visual motion detector that integrates direction and orientation selectivity features. A recent experiment in the Drosophila model highlights that stimulus orientation influences the neural response of direction cells. However, this interaction and the significance at the behavioral level are currently unknown. As such, another objective of this article is to study the effect of merging these two visual processes when contextualized in a neuro-robotic model and an operant conditioning procedure. In this work, the learning task was solved using an artificial spiking neural network, acting as the brain controller for virtual and physical robots, showing a behavior modulation from the integration of both visual processes.

[1]  Srinivas C. Turaga,et al.  Space-time wiring specificity supports direction selectivity in the retina , 2014, Nature.

[2]  Marla B Feller,et al.  Vision and the establishment of direction-selectivity: a tale of two circuits , 2009, Current Opinion in Neurobiology.

[3]  Wofgang Maas,et al.  Networks of spiking neurons: the third generation of neural network models , 1997 .

[4]  Frank S. Werblin,et al.  Mechanisms and circuitry underlying directional selectivity in the retina , 2002, Nature.

[5]  Lyle J. Borg-Graham,et al.  The computation of directional selectivity in the retina occurs presynaptic to the ganglion cell , 2001, Nature Neuroscience.

[6]  Aljoscha Nern,et al.  The comprehensive connectome of a neural substrate for ‘ON’ motion detection in Drosophila , 2017, eLife.

[7]  Damon A. Clark,et al.  Processing properties of ON and OFF pathways for Drosophila motion detection , 2014, Nature.

[8]  N. Franceschini,et al.  From insect vision to robot vision , 1992 .

[9]  Michael B. Reiser,et al.  The Emergence of Directional Selectivity in the Visual Motion Pathway of Drosophila , 2017, Neuron.

[10]  Jinglin Li,et al.  Local motion adaptation enhances the representation of spatial structure at EMD arrays , 2017, PLoS Comput. Biol..

[11]  Heinrich H. Bülthoff,et al.  Simulation and robot implementation of visual orientation behaviors of flies , 1998 .

[12]  Jeffrey L. Krichmar,et al.  Neurorobotics—A Thriving Community and a Promising Pathway Toward Intelligent Cognitive Robots , 2018, Front. Neurorobot..

[13]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[14]  Motion Detection: Neuronal Circuit Meets Theory , 2013, Cell.

[15]  Damon A. Clark,et al.  Parallel Computations in Insect and Mammalian Visual Motion Processing , 2016, Current Biology.

[16]  A. Borst,et al.  Neural Circuit Components of the Drosophila OFF Motion Vision Pathway , 2014, Current Biology.

[17]  Bruno van Swinderen,et al.  Vision in Drosophila: seeing the world through a model's eyes. , 2013, Annual review of entomology.

[18]  Alexander Borst,et al.  Complementary mechanisms create direction selectivity in the fly , 2016, eLife.

[19]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[20]  T. Martin McGinnity,et al.  A biologically inspired spiking model of visual processing for image feature detection , 2015, Neurocomputing.

[21]  Rajesh P. N. Rao,et al.  Motion detection and prediction through spike-timing dependent plasticity. , 2004, Network.

[22]  Alexander Borst,et al.  ON and OFF pathways in Drosophila motion vision , 2010, Nature.

[23]  A. Huberman,et al.  When Visual Circuits Collide: Motion Processing in the Brain , 2015, Cell.

[24]  Angelo Cangelosi,et al.  The Mechanics of Embodiment: A Dialog on Embodiment and Computational Modeling , 2011, Front. Psychology.

[25]  A. Borst,et al.  Comprehensive Characterization of the Major Presynaptic Elements to the Drosophila OFF Motion Detector , 2016, Neuron.

[26]  Louis K. Scheffer,et al.  A visual motion detection circuit suggested by Drosophila connectomics , 2013, Nature.

[27]  Li I. Zhang,et al.  Strengthening of Direction Selectivity by Broadly Tuned and Spatiotemporally Slightly Offset Inhibition in Mouse Visual Cortex. , 2015, Cerebral cortex.

[28]  A. Borst,et al.  Seeing Things in Motion: Models, Circuits, and Mechanisms , 2011, Neuron.

[29]  G. Schwartz,et al.  Cardinal Orientation Selectivity Is Represented by Two Distinct Ganglion Cell Types in Mouse Retina , 2016, The Journal of Neuroscience.

[30]  G. Rubin,et al.  A directional tuning map of Drosophila elementary motion detectors , 2013, Nature.

[31]  T. Toyoizumi,et al.  Learning with three factors: modulating Hebbian plasticity with errors , 2017, Current Opinion in Neurobiology.

[32]  B. Webb What does robotics offer animal behaviour? , 2000, Animal Behaviour.

[33]  Kevin L. Briggman,et al.  Wiring specificity in the direction-selectivity circuit of the retina , 2011, Nature.

[34]  Cole Gilbert,et al.  Brain Connectivity: Revealing the Fly Visual Motion Circuit , 2013, Current Biology.

[35]  R. Masland The tasks of amacrine cells , 2012, Visual Neuroscience.

[36]  A. Huberman,et al.  So many pieces, one puzzle: cell type specification and visual circuitry in flies and mice , 2014, Genes & development.

[37]  D. Feldman The Spike-Timing Dependence of Plasticity , 2012, Neuron.

[38]  Ben Poole,et al.  Direction Selectivity in Drosophila Emerges from Preferred-Direction Enhancement and Null-Direction Suppression , 2016, The Journal of Neuroscience.

[39]  Sylvain Chartier,et al.  Synergy between short-term and long-term plasticity explains direction-selectivity in visual cortex , 2017, 2017 IEEE Symposium Series on Computational Intelligence (SSCI).

[40]  C. W. G Clifford,et al.  Fundamental mechanisms of visual motion detection: models, cells and functions , 2002, Progress in Neurobiology.

[41]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[42]  James E. Fitzgerald,et al.  Nonlinear circuits for naturalistic visual motion estimation , 2015, eLife.

[43]  J. B. Demb,et al.  Functional Circuitry of the Retina. , 2015, Annual review of vision science.

[44]  Wolfgang Maass,et al.  Networks of Spiking Neurons: The Third Generation of Neural Network Models , 1996, Electron. Colloquium Comput. Complex..

[45]  A. Borst,et al.  Internal Structure of the Fly Elementary Motion Detector , 2011, Neuron.

[46]  Adam Bleckert,et al.  A Role for Synaptic Input Distribution in a Dendritic Computation of Motion Direction in the Retina , 2016, Neuron.

[47]  J. Leo van Hemmen,et al.  Spontaneously emerging direction selectivity maps in visual cortex through STDP , 2005, Biological Cybernetics.

[48]  Alexander Borst,et al.  Neural Circuit to Integrate Opposing Motions in the Visual Field , 2015, Cell.

[49]  Mounir Boukadoum,et al.  Operant conditioning: a minimal components requirement in artificial spiking neurons designed for bio-inspired robot's controller , 2014, Front. Neurorobot..

[50]  M. Poo,et al.  Spike Timing-Dependent LTP/LTD Mediates Visual Experience-Dependent Plasticity in a Developing Retinotectal System , 2006, Neuron.

[51]  Henning Sprekeler,et al.  Functional Requirements for Reward-Modulated Spike-Timing-Dependent Plasticity , 2010, The Journal of Neuroscience.

[52]  Ian A. Meinertzhagen,et al.  Candidate Neural Substrates for Off-Edge Motion Detection in Drosophila , 2014, Current Biology.

[53]  Alon Poleg-Polsky,et al.  Species-specific wiring for direction selectivity in the mammalian retina , 2016, Nature.

[54]  Mark Mazurek,et al.  Robust quantification of orientation selectivity and direction selectivity , 2014, Front. Neural Circuits.

[55]  A. Borst,et al.  A common directional tuning mechanism of Drosophila motion-sensing neurons in the ON and in the OFF pathway , 2017, eLife.

[56]  Yvette E. Fisher,et al.  Orientation Selectivity Sharpens Motion Detection in Drosophila , 2015, Neuron.

[57]  Stephen D. Van Hooser,et al.  Experience with moving visual stimuli drives the early development of cortical direction selectivity , 2008, Nature.

[58]  Samantha V. Adams,et al.  A Computational Model of Innate Directional Selectivity Refined by Visual Experience , 2015, Scientific Reports.

[59]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[60]  David Fitzpatrick,et al.  Initial Neighborhood Biases and the Quality of Motion Stimulation Jointly Influence the Rapid Emergence of Direction Preference in Visual Cortex , 2012, The Journal of Neuroscience.

[61]  Pierre Poirier,et al.  AI-SIMCOG: a simulator for spiking neurons and multiple animats’ behaviours , 2009, Neural Computing and Applications.