Towards Green Multi-frontal Solver for Adaptive Finite Element Method

Abstract In this paper we present the optimization of the energy consumption for the multi-frontal solver algorithm executed over two dimensional grids with point singularities. The multi-frontal solver algorithm is controlled by so-called elimination tree, defining the order of elimination of rows from particular frontal matrices, as well as order of memory transfers for Schur complement matrices. For a given mesh there are many possible elimination trees resulting in different number of floating point operations (FLOPs) of the solver or different amount of data transferred via memory transfers. In this paper we utilize the dynamic programming optimization procedure and we compare elimination trees optimized with respect to FLOPs with elimination trees optimized with respect to energy consumption.

[1]  Timothy A. Davis,et al.  Direct Methods for Sparse Linear Systems (Fundamentals of Algorithms 2) , 2006 .

[2]  Victor M. Calo,et al.  Dynamic Programming Algorithm for Generation of Optimal Elimination Trees for Multi-frontal Direct Solver Over H-refined Grids , 2014, ICCS.

[3]  Joseph W. H. Liu,et al.  The Multifrontal Method for Sparse Matrix Solution: Theory and Practice , 1992, SIAM Rev..

[4]  Patrick Amestoy,et al.  Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..

[5]  Esmond G. Ng,et al.  On the Minimum FLOPs Problem in the Sparse Cholesky Factorization , 2013, SIAM J. Matrix Anal. Appl..

[6]  Jürgen Schulze Towards a Tighter Coupling of Bottom-Up and Top-Down Sparse Matrix Ordering Methods , 2001 .

[7]  Krzysztof Banas,et al.  Vectorized OpenCL implementation of numerical integration for higher order finite elements , 2013, Comput. Math. Appl..

[8]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[9]  Mikhail Ju. Moshkov,et al.  An Automatic Way of Finding Robust Elimination Trees for a Multi-frontal Sparse Solver for Radical 2D Hierarchical Meshes , 2013, PPAM.

[10]  Patrick R. Amestoy,et al.  An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..

[11]  Iain S. Duff,et al.  The Multifrontal Solution of Unsymmetric Sets of Linear Equations , 1984 .

[12]  Krzysztof Banas,et al.  Numerical integration on GPUs for higher order finite elements , 2013, Comput. Math. Appl..

[13]  BanaśKrzysztof,et al.  Numerical integration on GPUs for higher order finite elements , 2014 .

[14]  John K. Reid,et al.  The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.

[15]  Ananta Tiwari,et al.  Modeling Power and Energy Usage of HPC Kernels , 2012, 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum.

[16]  M. Yannakakis Computing the Minimum Fill-in is NP^Complete , 1981 .

[17]  Maciej Wozniak,et al.  Fast GPU integration algorithm for isogeometric finite element method solvers using task dependency graphs , 2015, J. Comput. Sci..

[18]  L. Demkowicz One and two dimensional elliptic and Maxwell problems , 2006 .

[19]  Lukasz Madej,et al.  Two-dimensional HP-adaptive Algorithm for Continuous Approximations of Material Data Using Space Projection , 2013, Comput. Sci..

[20]  J. Reid,et al.  An approximate minimum degree algorithm for matrices with dense rows , 2008 .

[21]  Timothy A. Davis,et al.  Direct methods for sparse linear systems , 2006, Fundamentals of algorithms.

[22]  Robert E. Tarjan,et al.  Graph Clustering and Minimum Cut Trees , 2004, Internet Math..

[23]  Pinar Heggernes,et al.  The Computational Complexity of the Minimum Degree Algorithm , 2001 .

[24]  Patrick R. Amestoy,et al.  Multifrontal parallel distributed symmetric and unsymmetric solvers , 2000 .

[25]  L. Demkowicz,et al.  Entropy Controlled Adaptive Finite Element Simulations for Compressible Gas Flow , 1996 .

[26]  Long Chen FINITE ELEMENT METHOD , 2013 .

[27]  Victor M. Calo,et al.  Quasi-Optimal Elimination Trees for 2D Grids with Singularities , 2015, Sci. Program..

[28]  O. C. Zienkiewicz,et al.  The Finite Element Method: Its Basis and Fundamentals , 2005 .

[29]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..