Improvements of a Fast Parallel Poisson Solver on Irregular Domains

We discuss the scalable parallel solution of the Poisson equation on irregularly shaped domains discretized by finite differences. The symmetric positive definite system is solved by the preconditioned conjugate gradient algorithm with smoothed aggregation (SA) based algebraic multigrid (AMG) preconditioning. We investigate variants of the implementation of SA-AMG that lead to considerable improvements in the execution times. The improvements are due to a better data partitioning and the iterative solution of the coarsest level system in AMG. We demonstrate good scalability of the solver on a distributed memory parallel computer with up to 2048 processors.

[1]  Ji Qiang,et al.  Parallel 3D Poisson solver for a charged beam in a conducting pipe , 2001 .

[2]  Jonathan J. Hu,et al.  Parallel multigrid smoothing: polynomial versus Gauss--Seidel , 2003 .

[3]  U. van Rienen,et al.  A Self-Adaptive Multigrid Technique for 3-D Space Charge Calculations , 2008, IEEE Transactions on Magnetics.

[4]  Gene H. Golub,et al.  Matrix computations , 1983 .

[5]  P. Colella,et al.  A node-centered local refinement algorithm for Poisson's equation in complex geometries , 2004 .

[6]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[7]  Jonathan J. Hu,et al.  ML 5.0 Smoothed Aggregation Users's Guide , 2006 .

[8]  P. Brandimarte Finite Difference Methods for Partial Differential Equations , 2006 .

[9]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[10]  Tamara G. Kolda,et al.  An overview of the Trilinos project , 2005, TOMS.

[11]  Courtenay T. Vaughan,et al.  Zoltan data management services for parallel dynamic applications , 2002, Comput. Sci. Eng..

[12]  Peter Arbenz,et al.  A fast parallel Poisson solver on irregular domains applied to beam dynamics simulations , 2009, J. Comput. Phys..

[13]  AdamsMark,et al.  Parallel multigrid smoothing , 2003 .

[14]  George E. Forsythe,et al.  Finite-Difference Methods for Partial Differential Equations , 1961 .

[15]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[16]  Jonathan J. Hu,et al.  ML 3.1 smoothed aggregation user's guide. , 2004 .

[17]  W. Hackbusch Iterative Solution of Large Sparse Systems of Equations , 1993 .

[18]  Ray S. Tuminaro,et al.  Parallel Smoothed Aggregation Multigrid : Aggregation Strategies on Massively Parallel Machines , 2000, ACM/IEEE SC 2000 Conference (SC'00).

[19]  W. Marsden I and J , 2012 .

[20]  Ji Qiang,et al.  Three-dimensional Poisson solver for a charged beam with large aspect ratio in a conducting pipe , 2004, Comput. Phys. Commun..