An Unconstrained Quadratic Binary Programming Approach to the Vertex Coloring Problem

The vertex coloring problem has been the subject of extensive research for many years. Driven by application potential as well as computational challenge, a variety of methods have been proposed for this difficult class of problems. Recent successes in the use of the unconstrained quadratic programming (UQP) model as a unified framework for modeling and solving combinatorial optimization problems have motivated a new approach to the vertex coloring problem. In this paper we present a UQP approach to this problem and illustrate its attractiveness with preliminary computational experience.

[1]  Andrea Lodi,et al.  An evolutionary heuristic for quadratic 0-1 programming , 1999, Eur. J. Oper. Res..

[2]  Pierre Hansen,et al.  Constrained Nonlinear 0-1 Programming , 1989 .

[3]  P. Hammer,et al.  UPPER PLANES OF QUADRATIC 0–1 FUNCTIONS AND STABILITY IN GRAPHS , 1981 .

[4]  Panos M. Pardalos,et al.  Computational aspects of a branch and bound algorithm for quadratic zero-one programming , 1990, Computing.

[5]  J. Ben Rosen,et al.  A quadratic assignment formulation of the molecular conformation problem , 1994, J. Glob. Optim..

[6]  A. Prékopa,et al.  Probabilistic bounds and algorithms for the maximum satisfiability problem , 1990 .

[7]  Christoph Witzgall Mathematical methods of site selection for Electronic Message Systems (EMS) , 1975 .

[8]  B. Freisleben,et al.  Genetic algorithms for binary quadratic programming , 1999 .

[9]  F. Glover,et al.  Adaptive Memory Tabu Search for Binary Quadratic Programs , 1998 .

[10]  T. Stützle,et al.  An application of Iterated Local Search to the Graph Coloring Problem , 2007 .

[11]  Jin-Kao Hao,et al.  Tabu Search for Graph Coloring, T-Colorings and Set T-Colorings , 1999 .

[12]  Endre Boros,et al.  Pseudo-Boolean optimization , 2002, Discret. Appl. Math..

[13]  Pierre Hansen,et al.  State-of-the-Art Survey - Constrained Nonlinear 0-1 Programming , 1993, INFORMS J. Comput..

[14]  Alain Billionnet,et al.  Minimization of a quadratic pseudo-Boolean function , 1994 .

[15]  G. Kochenberger,et al.  0-1 Quadratic programming approach for optimum solutions of two scheduling problems , 1994 .

[16]  Olivier Coudert Exact coloring of real-life graphs is easy , 1997, DAC.

[17]  F. Glover,et al.  Tabu Search with Critical Event Memory: An Enhanced Application for Binary Quadratic Programs , 1999 .

[18]  Fred W. Glover,et al.  A Template for Scatter Search and Path Relinking , 1997, Artificial Evolution.

[19]  Jin-Kao Hao,et al.  Hybrid Evolutionary Algorithms for Graph Coloring , 1999, J. Comb. Optim..

[20]  Fred W. Glover,et al.  One-pass heuristics for large-scale unconstrained binary quadratic problems , 2002, Eur. J. Oper. Res..

[21]  P. Chardaire,et al.  A Decomposition Method for Quadratic Zero-One Programming , 1995 .

[22]  Martin Grötschel,et al.  An Application of Combinatorial Optimization to Statistical Physics and Circuit Layout Design , 1988, Oper. Res..

[23]  Bernd Freisleben,et al.  Greedy and Local Search Heuristics for Unconstrained Binary Quadratic Programming , 2002, J. Heuristics.

[24]  Panos M. Pardalos,et al.  A branch and bound algorithm for the maximum clique problem , 1992, Comput. Oper. Res..

[25]  D. J. Laughhunn Quadratic Binary Programming with Application to Capital-Budgeting Problems , 1970, Oper. Res..

[26]  P. Merz,et al.  Memetic algorithms for the unconstrained binary quadratic programming problem. , 2004, Bio Systems.

[27]  Michael A. Trick,et al.  A Column Generation Approach for Graph Coloring , 1996, INFORMS J. Comput..

[28]  Arun Jagota,et al.  Energy function-based approaches to graph coloring , 2002, IEEE Trans. Neural Networks.

[29]  John E. Beasley,et al.  Heuristic algorithms for the unconstrained binary quadratic programming problem , 1998 .

[30]  C. Helmberg,et al.  Solving quadratic (0,1)-problems by semidefinite programs and cutting planes , 1998 .

[31]  Gintaras Palubeckis A heuristic-based branch and bound algorithm for unconstrained quadratic zero-one programming , 2005, Computing.

[32]  Leonidas D. Iasemidis,et al.  Transition to epileptic seizures: Optimization , 1999, Discrete Mathematical Problems with Medical Applications.

[33]  I. G. Rosenberg Brèves communications. 0-1 optimization and non-linear programming , 1972 .

[34]  R. McBride,et al.  An Implicit Enumeration Algorithm for Quadratic Integer Programming , 1980 .

[35]  Bahram Alidaee,et al.  A scatter search approach to unconstrained quadratic binary programs , 1999 .

[36]  F. Harary On the notion of balance of a signed graph. , 1953 .

[37]  Kengo Katayama,et al.  Solving Large Binary Quadratic Programming Problems by Effective Genetic Local Search Algorithm , 2000, GECCO.

[38]  Jakob Krarup,et al.  Computer-aided layout design , 1978 .

[39]  Talal M. Alkhamis,et al.  Simulated annealing for the unconstrained quadratic pseudo-Boolean function , 1998, Eur. J. Oper. Res..

[40]  Panos M. Pardalos,et al.  The maximum clique problem , 1994, J. Glob. Optim..

[41]  Silvano Martello,et al.  Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization , 2012 .

[42]  P. Hammer,et al.  Quadratic knapsack problems , 1980 .

[43]  HeuristicsGary Lewandowski,et al.  Experiments with Parallel Graph Coloring , 1994 .

[44]  Rafael Martí,et al.  Intensification and diversification with elite tabu search solutions for the linear ordering problem , 1999, Comput. Oper. Res..

[45]  J. Jeffry Howbert,et al.  The Maximum Clique Problem , 2007 .

[46]  P. Hansen Methods of Nonlinear 0-1 Programming , 1979 .