An Unconstrained Quadratic Binary Programming Approach to the Vertex Coloring Problem
暂无分享,去创建一个
Fred W. Glover | Bahram Alidaee | Gary A. Kochenberger | César Rego | F. Glover | G. Kochenberger | B. Alidaee | César Rego
[1] Andrea Lodi,et al. An evolutionary heuristic for quadratic 0-1 programming , 1999, Eur. J. Oper. Res..
[2] Pierre Hansen,et al. Constrained Nonlinear 0-1 Programming , 1989 .
[3] P. Hammer,et al. UPPER PLANES OF QUADRATIC 0–1 FUNCTIONS AND STABILITY IN GRAPHS , 1981 .
[4] Panos M. Pardalos,et al. Computational aspects of a branch and bound algorithm for quadratic zero-one programming , 1990, Computing.
[5] J. Ben Rosen,et al. A quadratic assignment formulation of the molecular conformation problem , 1994, J. Glob. Optim..
[6] A. Prékopa,et al. Probabilistic bounds and algorithms for the maximum satisfiability problem , 1990 .
[7] Christoph Witzgall. Mathematical methods of site selection for Electronic Message Systems (EMS) , 1975 .
[8] B. Freisleben,et al. Genetic algorithms for binary quadratic programming , 1999 .
[9] F. Glover,et al. Adaptive Memory Tabu Search for Binary Quadratic Programs , 1998 .
[10] T. Stützle,et al. An application of Iterated Local Search to the Graph Coloring Problem , 2007 .
[11] Jin-Kao Hao,et al. Tabu Search for Graph Coloring, T-Colorings and Set T-Colorings , 1999 .
[12] Endre Boros,et al. Pseudo-Boolean optimization , 2002, Discret. Appl. Math..
[13] Pierre Hansen,et al. State-of-the-Art Survey - Constrained Nonlinear 0-1 Programming , 1993, INFORMS J. Comput..
[14] Alain Billionnet,et al. Minimization of a quadratic pseudo-Boolean function , 1994 .
[15] G. Kochenberger,et al. 0-1 Quadratic programming approach for optimum solutions of two scheduling problems , 1994 .
[16] Olivier Coudert. Exact coloring of real-life graphs is easy , 1997, DAC.
[17] F. Glover,et al. Tabu Search with Critical Event Memory: An Enhanced Application for Binary Quadratic Programs , 1999 .
[18] Fred W. Glover,et al. A Template for Scatter Search and Path Relinking , 1997, Artificial Evolution.
[19] Jin-Kao Hao,et al. Hybrid Evolutionary Algorithms for Graph Coloring , 1999, J. Comb. Optim..
[20] Fred W. Glover,et al. One-pass heuristics for large-scale unconstrained binary quadratic problems , 2002, Eur. J. Oper. Res..
[21] P. Chardaire,et al. A Decomposition Method for Quadratic Zero-One Programming , 1995 .
[22] Martin Grötschel,et al. An Application of Combinatorial Optimization to Statistical Physics and Circuit Layout Design , 1988, Oper. Res..
[23] Bernd Freisleben,et al. Greedy and Local Search Heuristics for Unconstrained Binary Quadratic Programming , 2002, J. Heuristics.
[24] Panos M. Pardalos,et al. A branch and bound algorithm for the maximum clique problem , 1992, Comput. Oper. Res..
[25] D. J. Laughhunn. Quadratic Binary Programming with Application to Capital-Budgeting Problems , 1970, Oper. Res..
[26] P. Merz,et al. Memetic algorithms for the unconstrained binary quadratic programming problem. , 2004, Bio Systems.
[27] Michael A. Trick,et al. A Column Generation Approach for Graph Coloring , 1996, INFORMS J. Comput..
[28] Arun Jagota,et al. Energy function-based approaches to graph coloring , 2002, IEEE Trans. Neural Networks.
[29] John E. Beasley,et al. Heuristic algorithms for the unconstrained binary quadratic programming problem , 1998 .
[30] C. Helmberg,et al. Solving quadratic (0,1)-problems by semidefinite programs and cutting planes , 1998 .
[31] Gintaras Palubeckis. A heuristic-based branch and bound algorithm for unconstrained quadratic zero-one programming , 2005, Computing.
[32] Leonidas D. Iasemidis,et al. Transition to epileptic seizures: Optimization , 1999, Discrete Mathematical Problems with Medical Applications.
[33] I. G. Rosenberg. Brèves communications. 0-1 optimization and non-linear programming , 1972 .
[34] R. McBride,et al. An Implicit Enumeration Algorithm for Quadratic Integer Programming , 1980 .
[35] Bahram Alidaee,et al. A scatter search approach to unconstrained quadratic binary programs , 1999 .
[36] F. Harary. On the notion of balance of a signed graph. , 1953 .
[37] Kengo Katayama,et al. Solving Large Binary Quadratic Programming Problems by Effective Genetic Local Search Algorithm , 2000, GECCO.
[38] Jakob Krarup,et al. Computer-aided layout design , 1978 .
[39] Talal M. Alkhamis,et al. Simulated annealing for the unconstrained quadratic pseudo-Boolean function , 1998, Eur. J. Oper. Res..
[40] Panos M. Pardalos,et al. The maximum clique problem , 1994, J. Glob. Optim..
[41] Silvano Martello,et al. Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization , 2012 .
[42] P. Hammer,et al. Quadratic knapsack problems , 1980 .
[43] HeuristicsGary Lewandowski,et al. Experiments with Parallel Graph Coloring , 1994 .
[44] Rafael Martí,et al. Intensification and diversification with elite tabu search solutions for the linear ordering problem , 1999, Comput. Oper. Res..
[45] J. Jeffry Howbert,et al. The Maximum Clique Problem , 2007 .
[46] P. Hansen. Methods of Nonlinear 0-1 Programming , 1979 .