Predictive RANS simulations via Bayesian Model-Scenario Averaging

The turbulence closure model is the dominant source of error in most Reynolds-Averaged Navier-Stokes simulations, yet no reliable estimators for this error component currently exist. Here we develop a stochastic, a posteriori error estimate, calibrated to specific classes of flow. It is based on variability in model closure coefficients across multiple flow scenarios, for multiple closure models. The variability is estimated using Bayesian calibration against experimental data for each scenario, and Bayesian Model-Scenario Averaging (BMSA) is used to collate the resulting posteriors, to obtain a stochastic estimate of a Quantity of Interest (QoI) in an unmeasured (prediction) scenario. The scenario probabilities in BMSA are chosen using a sensor which automatically weights those scenarios in the calibration set which are similar to the prediction scenario. The methodology is applied to the class of turbulent boundary-layers subject to various pressure gradients. For all considered prediction scenarios the standard-deviation of the stochastic estimate is consistent with the measurement ground truth. Furthermore, the mean of the estimate is more consistently accurate than the individual model predictions.

[1]  Sai Hung Cheung,et al.  Bayesian uncertainty analysis with applications to turbulence modeling , 2011, Reliab. Eng. Syst. Saf..

[2]  B. Launder,et al.  Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc , 1974 .

[3]  David Draper,et al.  Assessment and Propagation of Model Uncertainty , 2011 .

[4]  Zhiqiang John Zhai,et al.  Evaluation of Various Turbulence Models in Predicting Airflow and Turbulence in Enclosed Environments by CFD: Part 2—Comparison with Experimental Data from Literature , 2007 .

[5]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[6]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[7]  Luk Peeters,et al.  Application of a multimodel approach to account for conceptual model and scenario uncertainties in groundwater modelling , 2010 .

[8]  Stavros Tavoularis,et al.  Further experiments on the evolution of turbulent stresses and scales in uniformly sheared turbulence , 1989, Journal of Fluid Mechanics.

[9]  Ming-Hui Chen,et al.  Monte Carlo Estimation of Bayesian Credible and HPD Intervals , 1999 .

[10]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[11]  D. E. Coles,et al.  PROCEEDINGS: COMPUTATION OF TURBULENT BOUNDARY LAYERS - 1968 AFOSR-IFP-STANFORD CONFERENCE, STANFORD UNIV., CALIF., 19-24 AUGUST 1968. VOLUME II. COMPILED DATA, , 1969 .

[12]  Adrian E. Raftery,et al.  Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .

[13]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[14]  S J Kline,et al.  The 1980-81 AFOSR-HTTM-Stanford Conference on Complex Turbulent Flows: Comparison of Computation & Experiment. , 1982 .

[15]  F. Schmitt About Boussinesq's turbulent viscosity hypothesis: historical remarks and a direct evaluation of its validity , 2007 .

[16]  Ming Ye,et al.  Combined Estimation of Hydrogeologic Conceptual Model, Parameter, and Scenario Uncertainty with Application to Uranium Transport at the Hanford Site 300 Area , 2006 .

[17]  Zhonghua Han,et al.  Efficient Uncertainty Quantification using Gradient-Enhanced Kriging , 2009 .

[18]  Ramana V. Grandhi,et al.  Quantification of model-form and predictive uncertainty for multi-physics simulation , 2011 .

[19]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[20]  Antonietta Mira,et al.  Zero variance Markov chain Monte Carlo for Bayesian estimators , 2010, Stat. Comput..

[21]  S J Kline,et al.  The 1980-81 AFOSR-HTTM (Heat Transfer and Turbulence Mechanics)-Stanford Conference on Complex Turbulent Flows: Comparison of Computation and Experiment. Volume 1. Objectives, Evaluation of Data, Specifications of Test Cases, Discussion, and Position Papers , 1980 .

[22]  Y. Marzouk,et al.  A stochastic collocation approach to Bayesian inference in inverse problems , 2009 .

[23]  Adrian E. Raftery,et al.  Bayesian Model Averaging: A Tutorial , 2016 .

[24]  F. Clauser Turbulent Boundary Layers in Adverse Pressure Gradients , 1954 .

[25]  Jeroen A. S. Witteveen,et al.  Probabilistic Collocation: An Efficient Non-Intrusive Approach for Arbitrarily Distributed Parametric Uncertainties , 2007 .

[26]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[27]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[28]  David C. Wilcox,et al.  Comparison of two-equation turbulence models for boundary layers with pressure gradient , 1993 .

[29]  Gianluca Iaccarino,et al.  Modeling of structural uncertainties in Reynolds-averaged Navier-Stokes closures , 2013 .

[30]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[31]  S. P. Neuman,et al.  Combined Estimation of Hydrogeologic Conceptual Model and Parameter Uncertainty , 2004 .

[32]  Jeroen A. S. Witteveen,et al.  Uncertainty quantification for laminar-turbulent transition prediction in RANS turbomachinery applications , 2011 .

[33]  Hester Bijl,et al.  Bayesian estimates of parameter variability in the k-ε turbulence model , 2014, J. Comput. Phys..

[34]  Hester Bijl,et al.  Uncertainty Quantification Applied to the k-epsilon Model of Turbulence Using the Probabilistic Collocation Method , 2008 .

[35]  D. Wilcox Turbulence modeling for CFD , 1993 .

[36]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[37]  Jeroen A. S. Witteveen,et al.  Simplex stochastic collocation with ENO-type stencil selection for robust uncertainty quantification , 2013, J. Comput. Phys..

[38]  Todd A. Oliver,et al.  Bayesian uncertainty quantification applied to RANS turbulence models , 2011 .

[39]  H. Lomax,et al.  Thin-layer approximation and algebraic model for separated turbulent flows , 1978 .