Capturing strain localization in dense sands with random density

SUMMARY This paper presents a three-invariant constitutive framework suitable for the numerical analyses of localization instabilities in granular materials exhibiting unstructured random density. A recently proposed elastoplastic model for sands based on critical state plasticity is enhanced with the third stress invariant to capture the difference in the compressive and extensional yield strengths commonly observed in geomaterials undergoing plastic deformation. The new three-invariant constitutive model, similar to its two-invariant predecessor, is capable of accounting for meso-scale inhomogeneities as well as material and geometric nonlinearities. Details regarding the numerical implementation of the model into a fully nonlinear finite element framework are presented and a closed-form expression for the consistent tangent operator, whose spectral form is used in the strain localization analyses, is derived. An algorithm based on the spectral form of the so-called acoustic tensor is proposed to search for the necessary conditions for deformation bands to develop. The aforementioned framework is utilized in a series of boundary-value problems on dense sand specimens whose density fields are modelled as exponentially distributed unstructured random fields to account for the effect of inhomogeneities at the meso-scale and the intrinsic uncertainty associated with them. Copyright 2006 John Wiley & Sons, Ltd.

[1]  Ronaldo I. Borja,et al.  Coupling plasticity and energy-conserving elasticity models for clays , 1997 .

[2]  J. M. Duncan,et al.  Elastoplastic Stress-Strain Theory for Cohesionless Soil , 1975 .

[3]  Gerhard A. Holzapfel,et al.  Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science , 2000 .

[4]  Dunja Perić,et al.  Influence of Lode’s angle on the pore pressure generation in soils , 2002 .

[5]  M. Shahinpoor,et al.  Statistical mechanical considerations on the random packing of granular materials , 1980 .

[6]  Ronaldo I. Borja,et al.  Cam-Clay plasticity, Part II: implicit integration of constitutive equation based a nonlinear elastic stress predictor , 1991 .

[7]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[8]  E. P. Warnke,et al.  CONSTITUTIVE MODEL FOR THE TRIAXIAL BEHAVIOR OF CONCRETE , 1975 .

[9]  Ronaldo I. Borja,et al.  Cam-Clay plasticity part III: Extension of the infinitesimal model to include finite strains , 1998 .

[10]  Ronaldo I. Borja,et al.  On the numerical integration of three-invariant elastoplastic constitutive models , 2003 .

[11]  G. Gudehus,et al.  Elastoplastische Stoffgleichungen für trockenen Sand , 1973 .

[12]  Lawrence L. Kupper,et al.  Probability, statistics, and decision for civil engineers , 1970 .

[13]  Ronaldo I. Borja,et al.  Bifurcation of elastoplastic solids to shear band mode at finite strain , 2001 .

[14]  Michael Ortiz,et al.  Symmetry-preserving return mapping algorithms and incrementally extremal paths: A unification of concepts , 1989 .

[15]  Wenxiong Huang,et al.  A study of localized deformation pattern in granular media , 2004 .

[16]  Poul V. Lade,et al.  Closure of "Static Instability and Liquefaction of Loose Fine Sandy Slopes" , 1993 .

[17]  G. Duclos New York 1987 , 2000 .

[18]  J. Rice,et al.  CONDITIONS FOR THE LOCALIZATION OF DEFORMATION IN PRESSURE-SENSITIVE DILATANT MATERIALS , 1975 .

[19]  Yannis F. Dafalias,et al.  Plastic spin: necessity or redundancy? , 1998 .

[20]  Kaspar Willam,et al.  Recent developments in the finite element analysis of prestressed concrete reactor vessels , 1974 .

[21]  John R. Rice,et al.  On numerically accurate finite element , 1974 .

[22]  M. Ortiz,et al.  A finite element method for localized failure analysis , 1987 .

[23]  R. Finno,et al.  Shear band displacements and void ratio evolution to critical state in dilative sands , 2003 .

[24]  J. C. Simo,et al.  Variational and projection methods for the volume constraint in finite deformation elasto-plasticity , 1985 .

[25]  N. S. Ottosen,et al.  Properties of discontinuous bifurcation solutions in elasto-plasticity , 1991 .

[26]  Majid T. Manzari,et al.  A critical state two-surface plasticity model for sands , 1997 .

[27]  S. Pietruszczak,et al.  Convexity of yield loci for pressure sensitive materials , 1988 .

[28]  Richard J. Finno,et al.  Digital Image Correlation to Evaluate Shear Banding in Dilative Sands , 2004 .

[29]  K. Roscoe,et al.  ON THE GENERALIZED STRESS-STRAIN BEHAVIOUR OF WET CLAY , 1968 .

[30]  J. Z. Zhu,et al.  The finite element method , 1977 .

[31]  W. G. Bickley Mathematical Theory Of Elasticity , 1946, Nature.

[32]  Ronaldo I. Borja,et al.  Cam-Clay plasticity, part I: implicit integration of elastoplastic constitutive relations , 1990 .

[33]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[34]  L. Murdoch,et al.  Hydraulic fracturing of soil during laboratory experiments Part 1. Methods and observations , 1993 .

[35]  Kaspar Willam,et al.  Constitutive Models for Engineering Materials , 2003 .

[36]  A. Huespe,et al.  Theoretical and computational issues in modelling material failure in strong discontinuity scenarios , 2004 .

[37]  W. Lode,et al.  Versuche über den Einfluß der mittleren Hauptspannung auf das Fließen der Metalle Eisen, Kupfer und Nickel , 1926 .

[38]  Mike Jefferies,et al.  NOR-SAND: A SIMPLE CRITICAL STATE MODEL FOR SAND , 1993 .

[39]  Guy T. Houlsby,et al.  THE USE OF A VARIABLE SHEAR MODULUS IN ELASTIC-PLASTIC MODELS FOR CLAYS , 1985 .

[40]  Dunja Perić,et al.  On the analytical solutions for the three-invariant Cam clay model , 2002 .

[41]  En-Jui Lee Elastic-Plastic Deformation at Finite Strains , 1969 .

[42]  Ronaldo I. Borja,et al.  Computational modeling of deformation bands in granular media. I. Geological and mathematical framework , 2004 .

[43]  I. S. Sokolnikoff Mathematical theory of elasticity , 1946 .

[44]  Ken Been,et al.  A STATE PARAMETER FOR SANDS , 1985 .

[45]  J. C. Simo,et al.  Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory , 1992 .

[46]  Gioacchino Viggiani,et al.  Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry , 2004 .

[47]  J. Mosler Numerical analyses of discontinuous material bifurcation: strong and weak discontinuities , 2005 .

[48]  José E. Andrade,et al.  Critical state plasticity. Part VI: Meso-scale finite element simulation of strain localization in discrete granular materials , 2006 .

[49]  Ronaldo I. Borja,et al.  Computational modeling of deformation bands in granular media. II. Numerical simulations , 2004 .