En route to electrically pumped broadly tunable middle infrared lasers based on transition metal doped II–VI semiconductors
暂无分享,去创建一个
Igor Moskalev | Vladimir V. Fedorov | Andrew Gallian | Sergey B. Mirov | S. Mirov | V. Fedorov | I. Moskalev | A. Gallian
[1] Hans P. Jenssen,et al. Advanced solid-state lasers , 1991 .
[2] Federico Capasso,et al. Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths , 2001 .
[3] J. Faist,et al. Mid-infrared (8.5 μm) semiconductor lasers operating at room temperature , 1997, IEEE Photonics Technology Letters.
[4] Development of AIIBVI semiconductors doped with Cr for IR laser application , 2002 .
[5] P. Blanconnier,et al. Luminescence in highly conductive n‐type ZnSe , 1975 .
[7] R. Bhargava. “Quantum-confined atoms”: novel luminescent centers for future II–VI devices , 2000 .
[8] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[9] Konstantin L. Vodopyanov,et al. Tunable middle infrared downconversion in GaSe and AgGaS2 , 1998 .
[10] Masanori Tanaka. Photoluminescence properties of Mn2+-doped II–VI semiconductor nanocrystals , 2002 .
[11] Irina T. Sorokina,et al. Cr2+-doped II–VI materials for lasers and nonlinear optics , 2004 .
[12] M. Godlewski,et al. Nonradiative recombination processes in wide band GAP II-VI phosphor materials , 1995 .
[13] M. Godlewski,et al. Auger-type excitation and de-excitation processes in rare earth and transition metal doped semiconductors , 2000 .
[14] A. Alivisatos. Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.
[15] Ralph H. Page,et al. Efficient broadly tunable continuous-wave Cr 2+ :ZnSe laser , 2001 .
[16] Ralph H. Page,et al. Tunable laser action at 4.0 microns from Fe:ZnSe , 2001 .
[17] Yining Huang,et al. Luminescence enhancement of ZnS:Mn nanoclusters in zeolite , 2000 .
[18] Jun Liu,et al. Luminescence decay kinetics of Mn 2+ -doped ZnS nanoclusters grown in reverse micelles , 2000 .
[19] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[20] W. C. Hughes,et al. II–VI blue/green laser diodes on ZnSe substrates , 1996 .
[21] S. Trivedi,et al. Demonstration of room-temperature laser action at 2.5 mum from Cr(2+):Cd(0.85)Mn(0.15)Te. , 1997, Optics letters.
[22] E. Sorokin,et al. Room-temperature CW diode-pumped Cr2+:ZnSe laser , 2001 .
[23] S. Mirov,et al. Broadly tunable compact continuous-wave Cr(2+):ZnS laser. , 2002, Optics letters.
[24] S. Mirov,et al. Mid-IR Cr2+:ZnS and ZnSe microchip lasers , 2002 .
[25] Yong-Hang Zhang,et al. CONTINUOUS WAVE OPERATION OF INAS/INASXSB1-X MIDINFRARED LASERS , 1995 .
[26] S. Mirov,et al. Spectroscopic Characterization and Laser Performance of Diffusion Doped Cr2+:ZnS , 2001 .
[27] I Moskalev,et al. Multiwavelength mid-IR spatially-dispersive CW laser based on polycrystalline Cr2+:ZnSe. , 2004, Optics express.
[28] M Kaminska,et al. The chromium impurity photogeneration transitions in ZnS, ZnSe and ZnTe , 1980 .
[29] D. Hommel,et al. Electrically pumped lasing from CdSe quantum dots , 2001 .
[30] A. Ishibashi. II–VI blue-green light emitters , 1996 .
[31] Timothy J. Carrig,et al. Power scaling of Cr2+:ZnSe lasers , 2001 .
[32] A. Zunger,et al. Many-electron multiplet effects in the spectra of 3 d impurities in heteropolar semiconductors , 1984 .
[33] M. Sopinskyy,et al. Electroluminescence in SiO x films and SiO x -film-based systems , 2003 .
[34] Wen-Bin Yan,et al. All-solid state laser system, continuously tunable over 0.2- to 10-μm spectral range , 1998, Other Conferences.
[35] S. Mirov,et al. Broadly tunable continuous-wave Cr/sup 2+/:ZnS laser , 2002, CLEO 2002.
[36] N. A. Vlasenko,et al. Near-infrared-emitting ZnS: Er and ZnS(Se): Cr TFEL devices , 2004 .
[37] Clifford R. Pollock,et al. OSA trends in optics and photonics on advanced solid state lasers , 1996 .
[38] H. Schulz,et al. Generation of near-infrared light pulses from ZnS:Cr under laser-enhanced cathode-beam excitation , 1995 .
[39] M. Tonelli,et al. 0.5 W efficient broadly tunable continuous-wave Cr 2+ :ZnSe laser , 2000 .
[40] Timothy J. Carrig,et al. Acousto-optic mode-locking of a Cr 2+ :ZnSe laser , 2000 .
[41] H. Ito,et al. Difference Frequency Generation of 5-18 mum in a AgGaSe(2) Crystal. , 1998, Applied optics.
[42] M. Mond,et al. 1W continuous-wave laser generation and excited state absorption measurements inCr2+:ZnSe , 2000 .
[43] Vladimir V. Fedorov,et al. Laser performance of Cr2+-doped ZnS , 2001, SPIE LASE.
[44] Isolated iron and chromium as recombination centers in ZnS , 1990 .
[45] A. Burger,et al. Continuous-wave broadly tunable Cr2+:ZnSe laser. , 1999, Optics letters.
[46] S B Mirov,et al. Erbium fiber laser-pumped continuous-wave microchip Cr(2+):ZnS and Cr(2+):ZnSe lasers. , 2002, Optics letters.
[47] A. Malko,et al. Optical gain and stimulated emission in nanocrystal quantum dots. , 2000, Science.
[48] M. Mond,et al. Efficient laser operation and continuous-wave diode pumping of Cr2+:ZnSe single crystals , 2001 .
[49] Ralph H. Page,et al. Cr/sup 2+/-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers , 1997 .
[50] Andrew G. Glen,et al. APPL , 2001 .
[51] Gallagher,et al. Optical properties of manganese-doped nanocrystals of ZnS. , 1994, Physical review letters.
[52] T. Matsuoka,et al. ZnSe-based white LEDs , 2000 .
[53] Paul B. Klein,et al. Laser oscillation at 3.53 μm from Fe2+ in n‐InP:Fe , 1983 .
[54] F. Capasso,et al. New frontiers in quantum cascade lasers and applications , 2000, IEEE Journal of Selected Topics in Quantum Electronics.
[55] Sandu Popescu,et al. OSA trends in optics and photonics , 2003 .
[56] Kenneth L. Schepler,et al. Optimization of Cr 2+ :CdSe for efficient laser operation , 2000 .
[57] S B Mirov,et al. 3.9-4.8 microm gain-switched lasing of Fe:ZnSe at room temperature. , 2005, Optics express.
[58] D. V. Gapontsev,et al. Diode and fibre pumped Cr/sup 2+/:ZnS mid-infrared external cavity and microchip lasers , 2003 .
[59] M. Bawendi,et al. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .
[60] E. Sorokin,et al. Sensitization of the induced radiation in Cr 2+ :ZnSe and Cr 2+ :ZnS lasers , 2002 .
[61] Clifford R. Pollock,et al. Power performance of a continuous-wave Cr 2+ :ZnSe laser at 2.47 micron , 2000 .
[62] Continuous-wave tunable Cr2+:ZnS laser , 2002 .
[63] T. Tanbun-ek,et al. Narrow‐band electroluminescence at 3.5 μm from impact excitation and ionization of Fe2+ ions in InP , 1996 .
[64] R. Kaufman,et al. Mechanism of formation of Ohmic contacts to ZnSe, ZnS, and mixed crystals ZnSXSe1−X , 1974 .
[65] Vladimir V. Fedorov,et al. CW and pulsed Cr/sup 2+/:ZnS and ZnSe microchip lasers , 2002, CLEO 2002.
[66] Ralph H. Page,et al. Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media , 1996 .