En route to electrically pumped broadly tunable middle infrared lasers based on transition metal doped II–VI semiconductors

Abstract In this work we report the study of Cr 2+ :ZnSe photo-luminescence under UV and visible excitation as well as middle-infrared electroluminescence of n-type, Cr doped bulk ZnSe crystals. Photo-conductance studies were performed to verify (2+)→(1+)→(2+)* ionization transitions responsible for Cr 2+ excitation. We report the first to our knowledge, Cr 2+ :ZnSe lasing using 532 nm excitation. The first ever room temperature electroluminescence was also achieved in bulk n-type Cr:Al:ZnSe. This electroluminescence over 1800–2800 nm spectral range is in a good agreement with the mid-IR Cr 2+ fluorescence under intra-shell optical excitation. Other spectral bands of electroluminescence were also observed at 600 nm and 8 μm. The visible electroluminescence observed is attributed to V zn –Al complexes in conductive crystals. The nature of the 8 μm electroluminescence requires additional studies. Photo-ionization results are essential for optical pumping of Cr:ZnSe by easily available visible lasers, and, most importantly, both these and the electroluminescence results open a pathway for Cr:ZnSe broadband mid-IR lasing under direct injection of free carriers. Future directions for electrical excitation of low dimensional II–VI structures, where quantum confinement of the atomic impurity is used, could result in a much more efficient transfer of energy from the host to the localized impurity, are discussed.

[1]  Hans P. Jenssen,et al.  Advanced solid-state lasers , 1991 .

[2]  Federico Capasso,et al.  Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths , 2001 .

[3]  J. Faist,et al.  Mid-infrared (8.5 μm) semiconductor lasers operating at room temperature , 1997, IEEE Photonics Technology Letters.

[4]  Development of AIIBVI semiconductors doped with Cr for IR laser application , 2002 .

[5]  P. Blanconnier,et al.  Luminescence in highly conductive n‐type ZnSe , 1975 .

[6]  李幼升,et al.  Ph , 1989 .

[7]  R. Bhargava “Quantum-confined atoms”: novel luminescent centers for future II–VI devices , 2000 .

[8]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[9]  Konstantin L. Vodopyanov,et al.  Tunable middle infrared downconversion in GaSe and AgGaS2 , 1998 .

[10]  Masanori Tanaka Photoluminescence properties of Mn2+-doped II–VI semiconductor nanocrystals , 2002 .

[11]  Irina T. Sorokina,et al.  Cr2+-doped II–VI materials for lasers and nonlinear optics , 2004 .

[12]  M. Godlewski,et al.  Nonradiative recombination processes in wide band GAP II-VI phosphor materials , 1995 .

[13]  M. Godlewski,et al.  Auger-type excitation and de-excitation processes in rare earth and transition metal doped semiconductors , 2000 .

[14]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[15]  Ralph H. Page,et al.  Efficient broadly tunable continuous-wave Cr 2+ :ZnSe laser , 2001 .

[16]  Ralph H. Page,et al.  Tunable laser action at 4.0 microns from Fe:ZnSe , 2001 .

[17]  Yining Huang,et al.  Luminescence enhancement of ZnS:Mn nanoclusters in zeolite , 2000 .

[18]  Jun Liu,et al.  Luminescence decay kinetics of Mn 2+ -doped ZnS nanoclusters grown in reverse micelles , 2000 .

[19]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[20]  W. C. Hughes,et al.  II–VI blue/green laser diodes on ZnSe substrates , 1996 .

[21]  S. Trivedi,et al.  Demonstration of room-temperature laser action at 2.5 mum from Cr(2+):Cd(0.85)Mn(0.15)Te. , 1997, Optics letters.

[22]  E. Sorokin,et al.  Room-temperature CW diode-pumped Cr2+:ZnSe laser , 2001 .

[23]  S. Mirov,et al.  Broadly tunable compact continuous-wave Cr(2+):ZnS laser. , 2002, Optics letters.

[24]  S. Mirov,et al.  Mid-IR Cr2+:ZnS and ZnSe microchip lasers , 2002 .

[25]  Yong-Hang Zhang,et al.  CONTINUOUS WAVE OPERATION OF INAS/INASXSB1-X MIDINFRARED LASERS , 1995 .

[26]  S. Mirov,et al.  Spectroscopic Characterization and Laser Performance of Diffusion Doped Cr2+:ZnS , 2001 .

[27]  I Moskalev,et al.  Multiwavelength mid-IR spatially-dispersive CW laser based on polycrystalline Cr2+:ZnSe. , 2004, Optics express.

[28]  M Kaminska,et al.  The chromium impurity photogeneration transitions in ZnS, ZnSe and ZnTe , 1980 .

[29]  D. Hommel,et al.  Electrically pumped lasing from CdSe quantum dots , 2001 .

[30]  A. Ishibashi II–VI blue-green light emitters , 1996 .

[31]  Timothy J. Carrig,et al.  Power scaling of Cr2+:ZnSe lasers , 2001 .

[32]  A. Zunger,et al.  Many-electron multiplet effects in the spectra of 3 d impurities in heteropolar semiconductors , 1984 .

[33]  M. Sopinskyy,et al.  Electroluminescence in SiO x films and SiO x -film-based systems , 2003 .

[34]  Wen-Bin Yan,et al.  All-solid state laser system, continuously tunable over 0.2- to 10-μm spectral range , 1998, Other Conferences.

[35]  S. Mirov,et al.  Broadly tunable continuous-wave Cr/sup 2+/:ZnS laser , 2002, CLEO 2002.

[36]  N. A. Vlasenko,et al.  Near-infrared-emitting ZnS: Er and ZnS(Se): Cr TFEL devices , 2004 .

[37]  Clifford R. Pollock,et al.  OSA trends in optics and photonics on advanced solid state lasers , 1996 .

[38]  H. Schulz,et al.  Generation of near-infrared light pulses from ZnS:Cr under laser-enhanced cathode-beam excitation , 1995 .

[39]  M. Tonelli,et al.  0.5 W efficient broadly tunable continuous-wave Cr 2+ :ZnSe laser , 2000 .

[40]  Timothy J. Carrig,et al.  Acousto-optic mode-locking of a Cr 2+ :ZnSe laser , 2000 .

[41]  H. Ito,et al.  Difference Frequency Generation of 5-18 mum in a AgGaSe(2) Crystal. , 1998, Applied optics.

[42]  M. Mond,et al.  1W continuous-wave laser generation and excited state absorption measurements inCr2+:ZnSe , 2000 .

[43]  Vladimir V. Fedorov,et al.  Laser performance of Cr2+-doped ZnS , 2001, SPIE LASE.

[44]  Isolated iron and chromium as recombination centers in ZnS , 1990 .

[45]  A. Burger,et al.  Continuous-wave broadly tunable Cr2+:ZnSe laser. , 1999, Optics letters.

[46]  S B Mirov,et al.  Erbium fiber laser-pumped continuous-wave microchip Cr(2+):ZnS and Cr(2+):ZnSe lasers. , 2002, Optics letters.

[47]  A. Malko,et al.  Optical gain and stimulated emission in nanocrystal quantum dots. , 2000, Science.

[48]  M. Mond,et al.  Efficient laser operation and continuous-wave diode pumping of Cr2+:ZnSe single crystals , 2001 .

[49]  Ralph H. Page,et al.  Cr/sup 2+/-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers , 1997 .

[50]  Andrew G. Glen,et al.  APPL , 2001 .

[51]  Gallagher,et al.  Optical properties of manganese-doped nanocrystals of ZnS. , 1994, Physical review letters.

[52]  T. Matsuoka,et al.  ZnSe-based white LEDs , 2000 .

[53]  Paul B. Klein,et al.  Laser oscillation at 3.53 μm from Fe2+ in n‐InP:Fe , 1983 .

[54]  F. Capasso,et al.  New frontiers in quantum cascade lasers and applications , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[55]  Sandu Popescu,et al.  OSA trends in optics and photonics , 2003 .

[56]  Kenneth L. Schepler,et al.  Optimization of Cr 2+ :CdSe for efficient laser operation , 2000 .

[57]  S B Mirov,et al.  3.9-4.8 microm gain-switched lasing of Fe:ZnSe at room temperature. , 2005, Optics express.

[58]  D. V. Gapontsev,et al.  Diode and fibre pumped Cr/sup 2+/:ZnS mid-infrared external cavity and microchip lasers , 2003 .

[59]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[60]  E. Sorokin,et al.  Sensitization of the induced radiation in Cr 2+ :ZnSe and Cr 2+ :ZnS lasers , 2002 .

[61]  Clifford R. Pollock,et al.  Power performance of a continuous-wave Cr 2+ :ZnSe laser at 2.47 micron , 2000 .

[62]  Continuous-wave tunable Cr2+:ZnS laser , 2002 .

[63]  T. Tanbun-ek,et al.  Narrow‐band electroluminescence at 3.5 μm from impact excitation and ionization of Fe2+ ions in InP , 1996 .

[64]  R. Kaufman,et al.  Mechanism of formation of Ohmic contacts to ZnSe, ZnS, and mixed crystals ZnSXSe1−X , 1974 .

[65]  Vladimir V. Fedorov,et al.  CW and pulsed Cr/sup 2+/:ZnS and ZnSe microchip lasers , 2002, CLEO 2002.

[66]  Ralph H. Page,et al.  Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media , 1996 .