Rostral ventrolateral medulla muscarinic receptor involvement in central ventilatory chemosensitivity.

The muscarinic receptor antagonist atropine (105 mM) dramatically decreased the response to increased CO2 when applied by cotton pledgets to the rostral ventrolateral medulla ventilatory chemosensitive area in anesthetized, paralyzed, vagotomized, glomectomized, and servoventilated cats with integrated phrenic nerve activity used as respiratory center output. Lower dose atropine (4.4 mM) and the M1-muscarinic receptor subtype antagonist pirenzepine (10 mM) also significantly decreased the mean CO2 response slope 48.3 +/- 6.2 and 40.7 +/- 6.0% (SE), respectively, and significantly decreased the maximum response value 26.3 +/- 8.1 and 19.2 +/- 3.2%, respectively, without significant effects on blood pressure or on the phrenic response to carotid sinus nerve stimulation. The M2-muscarinic receptor subtype antagonist AF-DX 116 (10 mM) had no significant effect on phrenic output or blood pressure. Application of carbachol (10 mM) at the rostral area augmented eucapnic phrenic output and the maximum value of the CO2 response but decreased the initial slope, effects blocked by atropine. Carbachol also decreased the response to carotid sinus nerve stimulation, suggesting that the system was saturated by carbachol stimulation. Muscarinic cholinergic receptors accessible to surface application at the rostral ventrolateral medulla antagonized by pirenzepine but not AF-DX 116 appear to be involved in the central chemoreceptor process.