The effect of isopropylamine-capped PbS quantum dots on infrared photodetectors and photovoltaics

Abstract In this paper, we explore the impact of isopropylamine (IPAM) as a short ligand on a solution-processed infrared photodetector and a photovoltaic device using lead sulfide (PbS) colloidal quantum dots. Original oleic acid capping is replaced by isopropylamine through a solution-phase ligand exchange process. Then a blend of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] or MEH-PPV and the isopropylamine-capped PbS colloidal quantum dots is prepared for a photosensitive layer sandwiched by two different electrodes. Results illustrate that contribution of isopropylamine can improve the responsivity of a photodetector and enhance the photovoltaic performance by increasing the open circuit voltage and short circuit current.

[1]  R. Newman,et al.  Intrinsic Optical Absorption in Single-Crystal Germanium and Silicon at 77°K and 300°K , 1955 .

[2]  Anusorn Kongkanand,et al.  Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. , 2008, Journal of the American Chemical Society.

[3]  D. M. Gates,et al.  Spectral Distribution of Solar Radiation at the Earth's Surface. , 1966, Science.

[4]  G. Konstantatos,et al.  Colloidal Quantum Dot Photodetectors , 2013 .

[5]  Silke L. Diedenhofen,et al.  Integrated colloidal quantum dot photodetectors with color-tunable plasmonic nanofocusing lenses , 2015, Light: Science & Applications.

[6]  Illan J. Kramer,et al.  Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance , 2016, Advanced materials.

[7]  J. Song,et al.  Photovoltaic In0.5Ga0.5As/GaAs quantum dot infrared photodetector with a single-sided Al0.3Ga0.7As layer , 2005 .

[8]  Dirk Poelman,et al.  Composition and size-dependent extinction coefficient of colloidal PbSe quantum dots , 2007 .

[9]  Vaidyanathan Subramanian,et al.  Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. , 2006, Journal of the American Chemical Society.

[10]  Ludovico Cademartiri,et al.  Size-dependent extinction coefficients of PbS quantum dots. , 2006, Journal of the American Chemical Society.

[11]  Christopher B. Murray,et al.  Structural diversity in binary nanoparticle superlattices , 2006, Nature.

[12]  P. Kamat,et al.  Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe. , 2009, ACS nano.

[13]  Prashant V. Kamat,et al.  Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters , 2008 .

[14]  Effective one-dimensional electronic structure of InGaAs quantum dot molecules , 2008 .

[15]  G. Konstantatos,et al.  Solution-processed PbS quantum dot infrared photodetectors and photovoltaics , 2005, Nature materials.

[16]  Jong‐Soo Lee,et al.  III-V nanocrystals capped with molecular metal chalcogenide ligands: high electron mobility and ambipolar photoresponse. , 2013, Journal of the American Chemical Society.

[17]  T. Bein,et al.  Passivation of PbS Quantum Dot Surface with l-Glutathione in Solid-State Quantum-Dot-Sensitized Solar Cells. , 2016, ACS applied materials & interfaces.

[18]  Edward H. Sargent Colloidal quantum dot solar cells , 2012 .

[19]  Matthew J. Greaney,et al.  Controlling the Trap State Landscape of Colloidal CdSe Nanocrystals with Cadmium Halide Ligands , 2015 .

[20]  Arvind Shah,et al.  Towards Very Low-Cost Mass Production of Thin-film Silicon Photovoltaic (PV) Solar Modules on Glass , 2006 .

[21]  I. Moreels,et al.  Size-dependent optical properties of colloidal PbS quantum dots. , 2009, ACS nano.

[22]  P. Changmoang,et al.  Extended optical properties beyond band-edge of GaAs by InAs quantum dots and quantum dot molecules , 2010 .

[23]  Peng,et al.  Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. , 1996, Physical review. B, Condensed matter.