Generation of Responses in Receptor

Receptors are specialized nerve cells and share with them a number of important properties. Therefore, a brief description of the general features of nerve cells may be useful as an introduction to the study of receptors. A diagram of a nerve cell and its connections is shown in Fig. 1. The cell includes a dendritic tree, the soma, the axon and terminal branches. In vertebrates, synaptic contacts occur mostly at the soma and dendrites; in invertebrates they may be located at the axon. In both vertebrates and invertebrates, dendrites may be absent. The axon can be over 1 m long, but in many cells it is so short (about 1 mm) that it cannot be easily distinguished from the dendritic branches (Golgi, 1883).

[1]  T. Shibuya,et al.  A physiologic and pharmacologic study of olfactory receptors. , 1965, Cold Spring Harbor symposia on quantitative biology.

[2]  H. Grundfest,et al.  Electrical inexcitability of synapses and some consequences in the central nervous system. , 1957, Physiological reviews.

[3]  J. Gray,et al.  Properties of the receptor potential in Pacinian corpuscles , 1953, The Journal of physiology.

[4]  S J HUBBARD,et al.  A study of rapid mechanical events in a mechanoreceptor , 1958, The Journal of physiology.

[5]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[6]  H. Grundfest Electrophysiology and pharmacology of different components of bioelectric transducers. , 1965, Cold Spring Harbor symposia on quantitative biology.

[7]  E. D. Adrian,et al.  The Basis of Sensation , 1928, The Indian Medical Gazette.

[8]  A. W. Liley,et al.  The quantal components of the mammalian end‐plate potential , 1956, The Journal of physiology.

[9]  S. W. Kuffler,et al.  PROCESSES OF EXCITATION IN THE DENDRITES AND IN THE SOMA OF SINGLE ISOLATED SENSORY NERVE CELLS OF THE LOBSTER AND CRAYFISH , 1955, The Journal of general physiology.

[10]  T. Tomita Electrophysiological study of the mechanisms subserving color coding in the fish retina. , 1965, Cold Spring Harbor symposia on quantitative biology.

[11]  H. Davis,et al.  A model for transducer action in the cochlea. , 1965, Cold Spring Harbor symposia on quantitative biology.

[12]  A. Hodgkin The local electric changes associated with repetitive action in a non‐medullated axon , 1948, The Journal of physiology.

[13]  E F MACNICHOL,et al.  The peripheral origin of nervous activity in the visual system. , 1952, Cold Spring Harbor symposia on quantitative biology.

[14]  W. Loewenstein,et al.  Components of receptor adaptation in a Pacinian corpuscle , 1965, The Journal of physiology.

[15]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[16]  A. Hodgkin,et al.  Changes in time scale and sensitivity in the ommatidia of Limulus , 1964, The Journal of physiology.

[17]  M. Fuortes Initiation of impulses in visual cells of Limulus , 1959, The Journal of physiology.

[18]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[19]  A. Hodgkin,et al.  THE IONIC BASIS OF ELECTRICAL ACTIVITY IN NERVE AND MUSCLE , 1951 .

[20]  F. Baumann Slow and Spike Potentials Recorded from Retinula Cells of the Honeybee Drone in Response to Light , 1968, The Journal of general physiology.

[21]  M BERMAN,et al.  THE FORMULATION AND TESTING OF MODELS , 1963, Annals of the New York Academy of Sciences.

[22]  V. Mountcastle,et al.  NEURAL ACTIVITY IN MECHANORECEPTIVE CUTANEOUS AFFERENTS: STIMULUS-RESPONSE RELATIONS, WEBER FUNCTIONS, AND INFORMATION TRANSMISSION. , 1965, Journal of neurophysiology.

[23]  D. Baylor,et al.  Electrical responses of single cones in the retina of the turtle , 1970, The Journal of physiology.

[24]  Ramón y Cajal,et al.  Histologie du système nerveux de l'homme & des vertébrés , 1909 .

[25]  F. Plum Handbook of Physiology. , 1960 .

[26]  M. Fuortes,et al.  Electric activity of cells in the eye of Limulus. , 1958, American journal of ophthalmology.

[27]  E. Adrian,et al.  The physical background of perception , 1947 .

[28]  G. H. Bishop The neurophysiological basis of mind; the principles of neurophysiology , 1953 .

[29]  A. Gorman,et al.  Membrane Conductances and Spectral Sensitivities of Pecten Photoreceptors , 1970, The Journal of general physiology.

[30]  H. S. Gasser AXONS AS SAMPLES OF NERVOUS TISSUE , 1939 .

[31]  A. Flock,et al.  Transducing mechanisms in the lateral line canal organ receptors. , 1965, Cold Spring Harbor symposia on quantitative biology.

[32]  C. Terzuolo,et al.  Relation between stimulus strength, generator potential and impulse frequency in stretch receptor of Crustacea. , 1962, Journal of neurophysiology.

[33]  V. Mountcastle The Neural Replication of Sensory Events in the Somatic Afferent System , 1965 .

[34]  D Ottoson,et al.  Receptor potentials and impulse generation in the isolated spindle during controlled extension. , 1965, Cold Spring Harbor symposia on quantitative biology.

[35]  U. Thurm,et al.  An insect mechanoreceptor. II. Receptor potentials. , 1965, Cold Spring Harbor Symposia on Quantitative Biology.

[36]  B. Katz,et al.  A study of synaptic transmission in the absence of nerve impulses , 1967, The Journal of physiology.

[37]  J. Eccles,et al.  The specific ionic conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory post‐synaptic potential , 1955, The Journal of physiology.

[38]  J. Dowling,et al.  Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. , 1969, Journal of neurophysiology.

[39]  Werner R. Loewenstein,et al.  Mechanisms of Receptor Adaptation , 1964, Science.

[40]  M. Fuortes,et al.  STEPS IN THE PRODUCTION OF MOTONEURON SPIKES , 1957, The Journal of general physiology.

[41]  L. Mullins,et al.  Molecular structure and functional activity of nerve cells , 1956 .

[42]  A. Bortoff,et al.  Localization of slow potential responses in the Necturus retina. , 1964, Vision research.

[43]  C. Terzuolo,et al.  Separation of Transducer and Impulse-Generating Processes in Sensory Receptors , 1963, Science.

[44]  B. Katz,et al.  Depolarization of sensory terminals and the initiation of impulses in the muscle spindle , 1950, The Journal of physiology.

[45]  E. D. Adrian,et al.  The Mechanism of Nervous Action , 1932 .

[46]  A. Gorman,et al.  Hyperpolarizing and Depolarizing Receptor Potentials in the Scallop Eye , 1969, Science.

[47]  W. Loewenstein THE GENERATION OF ELECTRIC ACTIVITY IN A NERVE ENDING * , 1959, Annals of the New York Academy of Sciences.

[48]  J. Eccles,et al.  Excitatory synaptic action in motoneurones , 1955, The Journal of physiology.

[49]  J. Wersäll,et al.  A STUDY OF THE ORIENTATION OF THE SENSORY HAIRS OF THE RECEPTOR CELLS IN THE LATERAL LINE ORGAN OF FISH, WITH SPECIAL REFERENCE TO THE FUNCTION OF THE RECEPTORS , 1962, The Journal of cell biology.

[50]  M. Fuortes,et al.  Interpretation of the Repetitive Firing of Nerve Cells , 1962, The Journal of general physiology.

[51]  A. Lasansky CELL JUNCTIONS IN OMMATIDIA OF LIMULUS , 1967, The Journal of cell biology.

[52]  A. Bortoff,et al.  An electrical model of the vertebrate photoreceptor cell. , 1967, Vision research.

[53]  H. Blaschko Inhibition in the nervous system and gamma-aminobutyric acid: (E. Roberts: Editor) Pergamon Press, Ltd., Oxford, 1960, 600 pp, 100s. , 1961 .

[54]  B. Matthews The response of a single end organ , 1931, The Journal of physiology.

[55]  R. Marimont Numerical studies of the Fuortes‐Hodgkin Limulus model. , 1965, The Journal of physiology.

[56]  B. Katz,et al.  Quantal components of the end‐plate potential , 1954, The Journal of physiology.

[57]  J. Toyoda,et al.  Light-induced resistance changes in single photoreceptors of Necturus and Gekko. , 1969, Vision research.

[58]  P. Dirac Principles of Quantum Mechanics , 1982 .

[59]  A. Gorman,et al.  Photoreceptor Potentials of Opposite Polarity in the Eye of the Scallop, Pecten irradians , 1970, The Journal of general physiology.

[60]  M. Fuortes,et al.  Transient Responses to Sudden Illumination in Cells of the Eye of Limulus , 1963, The Journal of general physiology.

[61]  B. Katz,et al.  An analysis of the end‐plate potential recorded with an intra‐cellular electrode , 1951, The Journal of physiology.

[62]  The electrophysiological properties of the motoneurone. , 1952, Cold Spring Harbor symposia on quantitative biology.

[63]  N. Bohr,et al.  Light and Life , 1933, Nature.

[64]  W. Möllendorff,et al.  Handbuch der Mikroskopischen Anatomie des Menschen , 1958 .

[65]  R. Granit,et al.  NERVE AS MODEL TEMPERATURE END ORGAN , 1946, The Journal of general physiology.

[66]  H. Grundfest An electrophysiological basis for cone vision in fish , 1958 .

[67]  W. Loewenstein Facets of a transducer process. , 1965, Cold Spring Harbor symposia on quantitative biology.

[68]  H DAVIS,et al.  Some principles of sensory receptor action. , 1961, Physiological reviews.

[69]  A. Arvanitaki Les variations graduées de la polarisation des systèmes excitables : relation avec la négativité propagée et signification fonctionnelle dans l'activité rhythmique , 1938 .

[70]  H. K. Hartline,et al.  Intensity and duration in the excitation of single photoreceptor units , 1934 .

[71]  A Kaneko,et al.  Recording site of the single cone response determined by an electrode marking technique. , 1967, Vision research.