An enhanced adaptive differential evolution algorithm for parameter extraction of photovoltaic models

Abstract Parameter extraction of photovoltaic models based on measured current-voltage data plays an important role in the simulation, control, and optimization of photovoltaic systems. Although many parameter extraction techniques have been devoted to solving this problem, they may suffer from some deficiencies. In this paper, an enhanced adaptive differential evolution algorithm is proposed to extract photovoltaic parameters fast, accurately and reliably. In proposed method, the crossover rate sorting mechanism is introduced to assign each individual to an adapted crossover rate value according to their fitness values, which allows good elements to be more inherited in next generation. In addition, a dynamic population reduction strategy is used to improve the convergence speed and balance the exploration and exploitation. The performance of proposed method is confirmed by extracting parameters of different photovoltaic models, i.e., single diode, double diode, and photovoltaic modules. The simulated results show that the proposed method exhibits competitive performance on accuracy, reliability and convergence speed compared with other state-of-the-art algorithms. Further, the test results on experimental data from the manufacturers data sheet also indicate that the proposed algorithm can obtain superior solutions at different irradiance and temperature. Therefore, the proposed method can be an effective and efficient alternative for parameter extraction of photovoltaic models.

[1]  Xin Wang,et al.  Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization , 2017 .

[2]  Arthur C. Sanderson,et al.  JADE: Adaptive Differential Evolution With Optional External Archive , 2009, IEEE Transactions on Evolutionary Computation.

[3]  Saad Mekhilef,et al.  Parameter extraction of solar photovoltaic modules using penalty-based differential evolution , 2012 .

[4]  Leandro dos Santos Coelho,et al.  An improved free search differential evolution algorithm: A case study on parameters identification of one diode equivalent circuit of a solar cell module , 2015 .

[5]  Ponnuthurai N. Suganthan,et al.  Recent advances in differential evolution - An updated survey , 2016, Swarm Evol. Comput..

[6]  M. F. AlHajri,et al.  A new estimation approach for determining the I–V characteristics of solar cells , 2011 .

[7]  Jing Liang,et al.  Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models , 2018, Applied Energy.

[8]  Dalia Yousri,et al.  Flower Pollination Algorithm based solar PV parameter estimation , 2015 .

[9]  Alex S. Fukunaga,et al.  Improving the search performance of SHADE using linear population size reduction , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[10]  A. Ortiz-Conde,et al.  New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated I–V characteristics , 2006 .

[11]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[12]  A. Rezaee Jordehi,et al.  Parameter estimation of solar photovoltaic (PV) cells: A review , 2016 .

[13]  Wenxiang Zhao,et al.  Parameters identification of solar cell models using generalized oppositional teaching learning based optimization , 2016 .

[14]  Liang Gao,et al.  Parameter extraction of photovoltaic models using an improved teaching-learning-based optimization , 2019, Energy Conversion and Management.

[15]  Heng Wang,et al.  Parameter extraction of solar cell models using improved shuffled complex evolution algorithm , 2018, Energy Conversion and Management.

[16]  Lixin Tang,et al.  Differential Evolution With an Individual-Dependent Mechanism , 2015, IEEE Transactions on Evolutionary Computation.

[17]  A. R. Jordehi Enhanced leader particle swarm optimisation (ELPSO): An efficient algorithm for parameter estimation of photovoltaic (PV) cells and modules , 2018 .

[18]  Anis Sakly,et al.  Particle swarm optimisation with adaptive mutation strategy for photovoltaic solar cell/module parameter extraction , 2018, Energy Conversion and Management.

[19]  Liang Gao,et al.  Adaptive Differential Evolution With Sorting Crossover Rate for Continuous Optimization Problems , 2017, IEEE Transactions on Cybernetics.

[20]  D. Chan,et al.  Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics , 1987, IEEE Transactions on Electron Devices.

[21]  S. Karmalkar,et al.  An Analytical Method to Extract the Physical Parameters of a Solar Cell From Four Points on the Illuminated $J{-}V$ Curve , 2009, IEEE Electron Device Letters.

[22]  N. Tong,et al.  A parameter extraction technique exploiting intrinsic properties of solar cells , 2016 .

[23]  N. Rajasekar,et al.  A comprehensive review on solar PV maximum power point tracking techniques , 2017 .

[24]  Tamer Khatib,et al.  A comparative study of evolutionary algorithms and adapting control parameters for estimating the parameters of a single-diode photovoltaic module's model , 2016 .

[25]  Mohamed A. Awadallah,et al.  Variations of the bacterial foraging algorithm for the extraction of PV module parameters from nameplate data , 2016 .

[26]  Saad Mekhilef,et al.  Solar cell parameters extraction based on single and double-diode models: A review , 2016 .

[27]  Kashif Ishaque,et al.  Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review , 2015 .

[28]  Wenyin Gong,et al.  Parameter extraction of solar cell models using repaired adaptive differential evolution , 2013 .

[29]  Bin Xu,et al.  Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation , 2018 .

[30]  T. Easwarakhanthan,et al.  Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers , 1986 .

[31]  Xu Chen,et al.  A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module , 2019, Applied Energy.

[32]  A. Sellami,et al.  Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction , 2010 .

[33]  Xu Chen,et al.  Parameters identification of photovoltaic models using an improved JAYA optimization algorithm , 2017 .

[34]  Ranko Goic,et al.  review of solar photovoltaic technologies , 2011 .

[35]  Bin Sun,et al.  Simplex simplified swarm optimisation for the efficient optimisation of parameter identification for solar cell models , 2018 .

[36]  A. K. Al-Othman,et al.  Simulated Annealing algorithm for photovoltaic parameters identification , 2012 .