Extended fuzzy C-means clustering algorithm for hotspot events in spatial analysis

A known approach for the detection of hotspots is to use a cluster technique, which is an effective method for determining areas with elevated concentrations of localized events. We show that the extended fuzzy C-means (EFCM) algorithm works better than the classical FCM algorithm: indeed it determines automatically the initial number of clusters, it prevents the problem of shifting the clusters with low density area of data points in areas with higher density of such points and it finds the cluster volume prototypes as hyperspheres, here used for identifying hotspot areas in spatial analysis where the data are events geo-referenced as points on the geographic map. We have implemented the EFCM algorithm in a geographic information system (GIS) created with the usage of ESRI/ARCGIS and ESRI/ARCVIEW software tools and we have applied it to a specific problem of buildings maintenance.

[1]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[2]  Walter D. Fisher On Grouping for Maximum Homogeneity , 1958 .

[3]  Uzay Kaymak,et al.  Fuzzy clustering with volume prototypes and adaptive cluster merging , 2002, IEEE Trans. Fuzzy Syst..

[4]  Peter A. Burrough,et al.  High-resolution landform classification using fuzzy k-means , 2000, Fuzzy Sets Syst..

[5]  Robert Haining,et al.  A Comparative Evaluation of Approaches to Urban Crime Pattern Analysis , 2000 .

[6]  Jongwoo Kim,et al.  Clustering algorithms based on volume criteria , 2000, IEEE Trans. Fuzzy Syst..

[7]  G. W. Milligan,et al.  A NOTE ON PROCEDURES FOR TESTING THE QUALITY OF A CLUSTERING OF A SET OF OBJECTS , 1980 .

[8]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[9]  P. Sneath The application of computers to taxonomy. , 1957, Journal of general microbiology.

[10]  T. Caliński,et al.  A dendrite method for cluster analysis , 1974 .

[11]  A. D. Gordon How Many Clusters? An Investigation of Five Procedures for Detecting Nested Cluster Structure , 1998 .

[12]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[13]  Pedro Larrañaga,et al.  Partitional Cluster Analysis with Genetic Algorithms: Searching for the Number of Clusters , 1998 .

[14]  Lawrence E. Cohen,et al.  Social Change and Crime Rate Trends: A Routine Activity Approach , 1979 .

[15]  Alan T. Murray Spatial Characteristics and Comparisons of Interaction and Median Clustering Models , 2010 .

[16]  Robert Babuska,et al.  Methods for Simplification of Fuzzy Models , 1997 .

[17]  S. Arnold A Test for Clusters , 1979 .

[18]  J. Bezdek Cluster Validity with Fuzzy Sets , 1973 .

[19]  Rajesh N. Davé,et al.  Validating fuzzy partitions obtained through c-shells clustering , 1996, Pattern Recognit. Lett..

[20]  P. Burrough,et al.  Fuzzy k-means classification of topo-climatic data as an aid to forest mapping in the Greater Yellowstone Area, USA , 2001, Landscape Ecology.

[21]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[22]  Noureddine Zahid,et al.  A new cluster-validity for fuzzy clustering , 1999, Pattern Recognit..

[23]  M. Aldenderfer Cluster Analysis , 1984 .

[24]  Yongmei Jean-Claude Lu,et al.  Assessing the Cluster Correspondence between Paired Point Locations , 2003 .

[25]  J. Bezdek Numerical taxonomy with fuzzy sets , 1974 .

[26]  Keith W. Kintigh,et al.  Heuristic Approaches to Spatial Analysis in Archaeology , 1982, American Antiquity.

[27]  Uzay Kaymak,et al.  A sensitivity analysis approach to introducing weight factors into decision functions in fuzzy multicriteria decision making , 1998, Fuzzy Sets Syst..

[28]  Fahui Wang Geographic Information Systems and Crime Analysis , 2004 .

[29]  Alan T. Murray,et al.  Exploratory Spatial Data Analysis Techniques for Examining Urban Crime , 2001 .

[30]  G. W. Milligan,et al.  An examination of procedures for determining the number of clusters in a data set , 1985 .

[31]  William M. Rohe,et al.  NEIGHBORHOOD DESIGN AND CRIME. , 1983 .

[32]  Miin-Shen Yang,et al.  A cluster validity index for fuzzy clustering , 2005, Pattern Recognit. Lett..

[33]  Julian Besag,et al.  The Detection of Clusters in Rare Diseases , 1991 .

[34]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[35]  H. R. van Nauta Lemke,et al.  A Characteristic Optimism Factor in Fuzzy Decision-Making , 1983 .

[36]  E. Trauwaert On the meaning of Dunn's partition coefficient for fuzzy clusters , 1988 .

[37]  U. Kaymak,et al.  Compatible cluster merging for fuzzy modelling , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..

[38]  J. Bezdek,et al.  FCM: The fuzzy c-means clustering algorithm , 1984 .

[39]  Isak Gath,et al.  Unsupervised Optimal Fuzzy Clustering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Gerardo Beni,et al.  A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  A. McBratney,et al.  A continuum approach to soil classification by modified fuzzy k‐means with extragrades , 1992 .