Coherent modelling switch between pointwise and distributed representations of cell aggregates

[1]  Marco Scianna,et al.  A cellular Potts model analyzing differentiated cell behavior during in vivo vascularization of a hypoxic tissue , 2015, Comput. Biol. Medicine.

[2]  J A Sherratt,et al.  A Nonlocal Model for Contact Attraction and Repulsion in Heterogeneous Cell Populations , 2015, Bulletin of Mathematical Biology.

[3]  A. Tosin,et al.  Differentiated cell behavior: a multiscale approach using measure theory , 2014, Journal of Mathematical Biology.

[4]  L. Preziosi,et al.  A hybrid mathematical model for self-organizing cell migration in the zebrafish lateral line , 2013, Journal of mathematical biology.

[5]  L. Preziosi,et al.  A review of mathematical models for the formation of vascular networks. , 2013, Journal of theoretical biology.

[6]  Luigi Preziosi,et al.  Multiscale Developments of the Cellular Potts Model , 2012, Multiscale Model. Simul..

[7]  Luigi Preziosi,et al.  Differentiated cell behavior: a multiscale approach using measure theory , 2011, Journal of mathematical biology.

[8]  Peter Friedl,et al.  Determinants of leader cells in collective cell migration. , 2010, Integrative biology : quantitative biosciences from nano to macro.

[9]  Olga Ilina,et al.  Mechanisms of collective cell migration at a glance , 2009, Journal of Cell Science.

[10]  P. Friedl,et al.  Collective cell migration in morphogenesis, regeneration and cancer , 2009, Nature Reviews Molecular Cell Biology.

[11]  G. Rice,et al.  Multicellular spheroids in ovarian cancer metastases: Biology and pathology. , 2009, Gynecologic oncology.

[12]  H. Frieboes,et al.  Three-dimensional multispecies nonlinear tumor growth--I Model and numerical method. , 2008, Journal of theoretical biology.

[13]  D. Raible,et al.  FGF-Dependent Mechanosensory Organ Patterning in Zebrafish , 2008, Science.

[14]  C. Le Page,et al.  Characterization of ovarian cancer ascites on cell invasion, proliferation, spheroid formation, and gene expression in an in vitro model of epithelial ovarian cancer. , 2007, Neoplasia.

[15]  P. Maini,et al.  Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer , 2007, British Journal of Cancer.

[16]  Alissa M. Weaver,et al.  Tumor Morphology and Phenotypic Evolution Driven by Selective Pressure from the Microenvironment , 2006, Cell.

[17]  K. Painter,et al.  A continuum approach to modelling cell-cell adhesion. , 2006, Journal of theoretical biology.

[18]  Gabor Forgacs,et al.  The interplay of cell-cell and cell-matrix interactions in the invasive properties of brain tumors. , 2006, Biophysical journal.

[19]  A. Harris,et al.  Up-regulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function. , 2006, Blood.

[20]  A. Skubitz,et al.  Disaggregation and invasion of ovarian carcinoma ascites spheroids , 2006, Journal of Translational Medicine.

[21]  R. DiPaola,et al.  A Phase I Trial of Pox PSA vaccines (PROSTVAC®-VF) with B7-1, ICAM-1, and LFA-3 co-stimulatory molecules (TRICOM™) in Patients with Prostate Cancer , 2006, Journal of Translational Medicine.

[22]  A. Ghysen,et al.  Development of the zebrafish lateral line , 2004, Current Opinion in Neurobiology.

[23]  Gerhard Christofori,et al.  Changing neighbours, changing behaviour: cell adhesion molecule‐mediated signalling during tumour progression , 2003, The EMBO journal.

[24]  K. Sundfeldt Cell–cell adhesion in the normal ovary and ovarian tumors of epithelial origin; an exception to the rule , 2003, Molecular and Cellular Endocrinology.

[25]  V. Grieneisen,et al.  Gompertzian growth pattern correlated with phenotypic organization of colon carcinoma, malignant glioma and non‐small cell lung carcinoma cell lines , 2003, Cell proliferation.

[26]  Yan Li,et al.  Regulation of Notch1 and Dll4 by Vascular Endothelial Growth Factor in Arterial Endothelial Cells: Implications for Modulating Arteriogenesis and Angiogenesis , 2003, Molecular and Cellular Biology.

[27]  J Martin Brown,et al.  Tumor Microenvironment and the Response to Anticancer Therapy , 2002, Cancer biology & therapy.

[28]  J. Sherratt,et al.  Intercellular adhesion and cancer invasion: a discrete simulation using the extended Potts model. , 2002, Journal of theoretical biology.

[29]  G. Christofori,et al.  Cell adhesion in tumor invasion and metastasis: loss of the glue is not enough. , 2001, Biochimica et biophysica acta.

[30]  I. Whittle,et al.  The development of necrosis and apoptosis in glioma: experimental findings using spheroid culture systems* , 2001, Neuropathology and applied neurobiology.

[31]  E Medico,et al.  Met overexpression confers HGF‐dependent invasive phenotype to human thyroid carcinoma cells in vitro , 1999, Journal of cellular physiology.

[32]  J Smolle,et al.  Fractal tumor stromal border in a nonequilibrium growth model. , 1998, Analytical and quantitative cytology and histology.

[33]  A. V. Grimstone Molecular biology of the cell (3rd edn) , 1995 .

[34]  J Vandekerckhove,et al.  Scatter factor: molecular characteristics and effect on the invasiveness of epithelial cells , 1990, The Journal of cell biology.

[35]  L. Preziosi,et al.  A Measure-Theoretic Model for Collective Cell Migration and Aggregation , 2015 .

[36]  Kevin J Painter,et al.  Adding Adhesion to a Chemical Signaling Model for Somite Formation , 2009, Bulletin of mathematical biology.

[37]  Helen Parkinson,et al.  A quick introduction to elements of biology - cells, molecules, genes, functional genomics, microarrays , 2008 .

[38]  Michael Berens,et al.  A mathematical model of glioblastoma tumor spheroid invasion in a three-dimensional in vitro experiment. , 2007, Biophysical journal.

[39]  M. Zanetti,et al.  Journal of Translational Medicine BioMed Central , 2006 .