Faster optical delivery of self-arranged multi-particle cluster

Rectification of random motion of particle a motional array of optical traps created by interference of two counter-propagating evanescent waves, i.e. in a so called optical conveyor belt (OCB), leads to the directed and controlled motion of such a particle. Particle clusters are formed if more than one particle enters the OCB. The particles were optically self-arranged into a linear chain with well-separated distances between them. We observed a significant increase in the delivery speed of the whole structure as the number of particles in the chain increased. This could provide faster sample delivery in microfluidic systems. We quantified the contributions to the speed enhancement caused by the optical and hydrodynamical interactions between the particles.

[1]  Dieter Meschede,et al.  Deterministic Delivery of a Single Atom , 2002 .

[2]  D. Grier,et al.  Methods of Digital Video Microscopy for Colloidal Studies , 1996 .

[3]  David G Grier,et al.  Structure of optical vortices. , 2003, Physical review letters.

[4]  O. Brzobohatý,et al.  Static and dynamic behavior of two optically bound microparticles in a standing wave. , 2011, Optics express.

[5]  Miles J. Padgett,et al.  Underdamped modes in a hydrodynamically coupled microparticle system , 2009 .

[6]  Pál Ormos,et al.  Control of electro-osmostic flow by light , 2006 .

[7]  Ming C. Wu,et al.  Massively parallel manipulation of single cells and microparticles using optical images , 2005, Nature.

[8]  Karen Volke-Sepúlveda,et al.  Experimental control of transport and current reversals in a deterministic optical rocking ratchet. , 2011, Physical review letters.

[9]  Burns,et al.  Optical binding. , 1989, Physical review letters.

[10]  M. Lipson,et al.  Optofluidic trapping and transport on solid core waveguides within a microfluidic device. , 2007, Optics express.

[11]  Christopher D. Mellor,et al.  Array formation in evanescent waves. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[12]  Tomáš Čižmár,et al.  Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination , 2008 .

[13]  M. Šiler,et al.  Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery , 2006 .

[14]  David G. Grier,et al.  One-dimensional optical thermal ratchets , 2005, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  P. Reimann Brownian motors: noisy transport far from equilibrium , 2000, cond-mat/0010237.

[16]  P. Zemánek,et al.  Speed enhancement of multi-particle chain in a traveling standing wave , 2012 .

[17]  Tomáš Čižmár,et al.  Optical conveyor belt for delivery of submicron objects , 2005 .

[18]  Tomáš Čižmár,et al.  A dual beam photonic crystal fiber trap for microscopic particles , 2008 .

[19]  K. Dholakia,et al.  One-dimensional optically bound arrays of microscopic particles. , 2002, Physical review letters.

[20]  Pavel Zemánek,et al.  Particle jumps between optical traps in a one-dimensional (1D) optical lattice , 2010 .

[21]  Kishan Dholakia,et al.  Near-field optical micromanipulation with cavity enhanced evanescent waves , 2006 .

[22]  J. Happel,et al.  Low Reynolds number hydrodynamics , 1965 .

[23]  Martin Siler,et al.  Optical sorting and detection of submicrometer objects in a motional standing wave , 2006 .

[24]  Oto Brzobohatý,et al.  The holographic optical micro-manipulation system based on counter-propagating beams , 2010 .

[25]  脇屋 正一,et al.  J. Happel and H. Brenner: Low Reynolds Number Hydrodynamics, Prentice-Hall, 1965, 553頁, 16×23cm, 6,780円. , 1969 .

[26]  H. Stark,et al.  Circling particles and drafting in optical vortices , 2004, cond-mat/0405051.

[27]  Pavel Zemánek,et al.  Parametric study of optical forces acting upon nanoparticles in a single, or a standing, evanescent wave , 2011 .

[28]  S Keen,et al.  Eigenmodes of a hydrodynamically coupled micron-size multiple-particle ring. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  J. Cooper,et al.  Real time characterization of hydrodynamics in optically trapped networks of micro-particles. , 2010, Journal of biophotonics.

[30]  Stephen R Quake,et al.  Anomalous vibrational dispersion in holographically trapped colloidal arrays. , 2006, Physical review letters.

[31]  N. K. Metzger,et al.  Observation of bistability and hysteresis in optical binding of two dielectric spheres. , 2006, Physical review letters.

[32]  K. Grujić,et al.  Dielectric microsphere manipulation and chain assembly by counter-propagating waves in a channel waveguide. , 2007, Optics express.

[33]  Kaplan,et al.  Optical thermal ratchet. , 1995, Physical review letters.

[34]  Oto Brzobohatý,et al.  Dynamic size tuning of multidimensional optically bound matter , 2011 .