Comparison of localization and delocalization indices obtained with Hartree–Fock and conventional correlated methods: Effect of Coulomb correlation

Atomic populations and localization [λ(A)] and delocalization [δ(A,B)] indices (LIs and DIs) are calculated for a large set of molecules at the Hartree–Fock (HF), MP2, MP4(SDQ), CISD, and QCISD levels with the 6‐311++G(2d,2p) basis set. The HF method and the conventional correlation methods [MP2, MP4(SDQ), CISD, and QCISD] yield distinct sets of LIs and DIs. Yet, within the four conventional correlation methods the differences in atomic populations and LIs and DIs are small. Relative to HF, the conventional correlation methods [MP2, MP4(SDQ), CISD, QCISD] yield virtually the same LIs and DIs for molecules with large charge separations while LIs and DIs that differ significantly from the HF values—the LIs are increased and DIs decreased—are obtained for bonds with no or small charge separations. Such is the case in the archetypal homopolar molecules HCCH, H2CCH2, CH3CH3, and “protonated cyclopropane” C3H  7+ , in which case the bonding may be atypical. Relative to HF, the typical effect of the conventional correlation methods is to decrease the DI between atoms. © 2003 Wiley Periodicals, Inc. J Comput Chem 24: 1720–1729, 2003

[1]  R. J. Boyd,et al.  Coming to Grips with N−H···N Bonds. 1. Distance Relationships and Electron Density at the Bond Critical Point , 2001 .

[2]  Trygve Helgaker,et al.  Analytical Calculation of Geometrical Derivatives in Molecular Electronic Structure Theory , 1988 .

[3]  Kenneth B. Wiberg,et al.  Analysis of the effect of electron correlation on charge density distributions , 1992 .

[4]  I. Mayer On bond orders and valences in the Ab initio quantum chemical theory , 1986 .

[5]  Yi-Gui Wang,et al.  A practical and efficient method to calculate AIM localization and delocalization indices at post‐HF levels of theory , 2003, J. Comput. Chem..

[6]  A. Holas PROPERTIES OF THE GOEDECKER-UMRIGAR FUNCTIONAL FOR THE MANY-ELECTRON PROBLEM AND ITS GENERALIZATION , 1999 .

[7]  R. Bartlett Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry , 1989 .

[8]  Jerzy Cioslowski,et al.  Covalent bond orders in the topological theory of atoms in molecules , 1991 .

[9]  Paul von Ragué Schleyer,et al.  Theoretical Bond Energies: A Critical Evaluation , 2001 .

[10]  Á. M. Pendás,et al.  Non-nuclear Maxima of the Electron Density , 1999 .

[11]  E. L. Short,et al.  Quantum Chemistry , 1969, Nature.

[12]  N. Handy,et al.  Full CI calculations on BH, H2O, NH3, and HF , 1983 .

[13]  Paul L. A. Popelier,et al.  The electron pair , 1996 .

[14]  R. Fulton Sharing of electrons in molecules , 1993 .

[15]  S. Goedecker,et al.  Natural Orbital Functional for the Many-Electron Problem , 1998 .

[16]  P. Löwdin Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction , 1955 .

[17]  R. J. Boyd,et al.  Coming to Grips with N−H···N Bonds. 2. Homocorrelations between Parameters Deriving from the Electron Density at the Bond Critical Point1 , 2003 .

[18]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[19]  D. V. George Principles of Quantum Chemistry , 1972 .

[20]  Peter Pulay,et al.  Local configuration interaction: An efficient approach for larger molecules , 1985 .

[21]  J. Cioslowski,et al.  Constraints upon natural spin orbital functionals imposed by properties of a homogeneous electron gas , 1999 .

[22]  R. J. Boyd,et al.  The effect of electron correlation on the electron density distributions of molecules: Comparison of perturbation and configuration interaction methods , 1989 .

[23]  R. Bader,et al.  Properties of atoms in molecules: structures and reactivities of boranes and carboranes , 1992 .

[24]  Andrew Streitwieser,et al.  Electron Delocalization and the Fermi Hole , 1996 .

[25]  J. Dobado,et al.  Chemical Bonding in Hypervalent Molecules Revised. 3.† Application of the Atoms in Molecules Theory to Y3X−CH2 (X = N, P, or As; Y = H or F) and H2X−CH2 (X = O, S, or Se) Ylides , 2000 .

[26]  X. Fradera,et al.  Electron-pairing analysis from localization and delocalization indices in the framework of the atoms-in-molecules theory , 2002 .

[27]  R. J. Boyd,et al.  The effect of electron correlation on the topological and atomic properties of the electron density distributions of molecules , 1989 .

[28]  Henry F. Schaefer,et al.  On the evaluation of analytic energy derivatives for correlated wave functions , 1984 .

[29]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[30]  R. Bartlett Many-Body Perturbation Theory and Coupled Cluster Theory for Electron Correlation in Molecules , 1981 .

[31]  Xavier Fradera,et al.  The Lewis Model and Beyond , 1999 .

[32]  Xavier Fradera,et al.  New Insights in Chemical Reactivity by Means of Electron Pairing Analysis , 2001 .

[33]  M. Head‐Gordon,et al.  Quadratic configuration interaction: Reply to comment by Paldus, Cizek, and Jeziorski , 1989 .

[34]  A. J. Coleman,et al.  Reduced Density Matrices , 2000 .

[35]  Martin Head-Gordon,et al.  Quadratic configuration interaction. A general technique for determining electron correlation energies , 1987 .

[36]  R. J. Boyd,et al.  Hydrogen bonding between nitriles and hydrogen halides and the topological properties of molecular charge distributions , 1986 .

[37]  F. Escudero,et al.  Atoms in molecules , 1982 .

[38]  I. Mayer Bond orders and valences in the SCF theory: a comment , 1985 .

[39]  Peter Pulay,et al.  Generalized Mo/ller–Plesset perturbation theory: Second order results for two‐configuration, open‐shell excited singlet, and doublet wave functions , 1989 .

[40]  R. J. Boyd,et al.  S-S Bond Lengths, Or can a Bond Length be Estimated from a Single Parameter , 1988 .

[41]  Stefan Grimme,et al.  Theoretical Bond and Strain Energies of Molecules Derived from Properties of the Charge Density at Bond Critical Points , 1996 .

[42]  R. Bader,et al.  Spatial localization of the electronic pair and number distributions in molecules , 1975 .

[43]  R. Bader Professor Gillespie—a symbiotic relationship , 2000 .

[44]  R. Bader,et al.  Recognizing a triple bond between main group atoms , 2001 .

[45]  J. Ángyán,et al.  COVALENT BOND ORDERS AND ATOMIC VALENCE INDICES IN THE TOPOLOGICAL THEORY OF ATOMS IN MOLECULES , 1994 .

[46]  Julia E. Rice,et al.  The elimination of singularities in derivative calculations , 1985 .

[47]  R. J. Boyd,et al.  A Comparative Study of Electron Densities in Carbon Monoxide Calculated from Conventional ab Initio and Density Functional Methods , 1994 .

[48]  R. Bader,et al.  Effect of electron correlation on the topological properties of molecular charge distributions , 1988 .

[49]  R. Amos Corrections to molecular one-electron properties using møller-plesset perturbation theory , 1980 .

[50]  J. Gauss,et al.  Analytical Energy Gradients in Møller-Plesset Perturbation and Quadratic Configuration Interaction Methods: Theory and Application , 1992 .

[51]  Stabilization in neutral bicyclic sulfoxide compounds , 2000 .

[52]  Leif A. Eriksson,et al.  Diazasilene (SiNN): a comparative study of electron density distributions derived from Hartree-Fock, second-order Moller-Plesset perturbation theory, and density functional methods. , 1994 .

[53]  R. Bader,et al.  Properties of atoms and bonds in hydrocarbon molecules , 1982 .

[54]  Kenneth B. Wiberg,et al.  Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane , 1968 .

[55]  S. T. Mixon,et al.  Comparison of covalent bond indexes and sharing indexes , 1993 .

[56]  J. Dobado,et al.  The three-center-four-electron (3c-4e) bond nature revisited. An atoms-in-molecules theory (AIM) and ELF study , 2001 .

[57]  Xavier Fradera,et al.  The calculation of electron localization and delocalization indices at the Hartree–Fock, density functional and post-Hartree–Fock levels of theory , 2002 .

[58]  B. Judd,et al.  Reduced Density Matrices: Coulson's Challenge , 2000 .

[59]  G. Seifert Density-Functional Methods in Chemistry and Materials Science , 1998 .

[60]  Jay Martin Anderson,et al.  Introduction to quantum chemistry , 1969 .

[61]  Evert Jan Baerends,et al.  An approximate exchange-correlation hole density as a functional of the natural orbitals , 2002 .

[62]  Ernest R. Davidson,et al.  CONFIGURATION INTERACTION DESCRIPTION OF ELECTRON CORRELATION , 1974 .

[63]  Richard F. W. Bader A quantum theory of molecular structure and its applications , 1991 .

[64]  Electron pairing and chemical bonds: Bonding in hypervalent molecules from analysis of Fermi holes , 1999 .

[65]  Friedrich Biegler-König,et al.  Calculation of the average properties of atoms in molecules. II , 1982 .